Your browser doesn't support javascript.
loading
Intercellular communication in the vascular wall: a modeling perspective.
Nagaraja, Sridevi; Kapela, Adam; Tsoukias, Nikolaos M.
Afiliação
  • Nagaraja S; Department of Biomedical Engineering, Florida International University, Miami, Florida 33174, USA.
Microcirculation ; 19(5): 391-402, 2012 Jul.
Article em En | MEDLINE | ID: mdl-22340204
Movement of ions (Ca(2+) , K(+) , Na(+) , and Cl(-) ) and second messenger molecules like inositol 1, 4, 5-trisphosphate inside and in between different cells is the basis of many signaling mechanisms in the microcirculation. In spite of the vast experimental efforts directed toward evaluation of these fluxes, it has been a challenge to establish their roles in many essential microcirculatory phenomena. Recently, detailed theoretical models of calcium dynamics and plasma membrane electrophysiology have emerged to assist in the quantification of these intra and intercellular fluxes and enhance understanding of their physiological importance. This perspective reviews selected models relevant to estimation of such intra and intercellular ionic and second messenger fluxes and prediction of their relative significance to a variety of vascular phenomena, such as myoendothelial feedback, conducted responses, and vasomotion.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2012 Tipo de documento: Article