Your browser doesn't support javascript.
loading
Discovery of potent, selective chymase inhibitors via fragment linking strategies.
Taylor, Steven J; Padyana, Anil K; Abeywardane, Asitha; Liang, Shuang; Hao, Ming-Hong; De Lombaert, Stéphane; Proudfoot, John; Farmer, Bennett S; Li, Xiang; Collins, Brandon; Martin, Leslie; Albaugh, Daniel R; Hill-Drzewi, Melissa; Pullen, Steven S; Takahashi, Hidenori.
Afiliação
  • Taylor SJ; Department of Medicinal Chemistry, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0368, USA. steven.taylor@boehringeringelheim.com
J Med Chem ; 56(11): 4465-81, 2013 Jun 13.
Article em En | MEDLINE | ID: mdl-23659209
Chymase plays an important and diverse role in the homeostasis of a number of cardiovascular processes. Herein, we describe the identification of potent, selective chymase inhibitors, developed using fragment-based, structure-guided linking and optimization techniques. High-concentration biophysical screening methods followed by high-throughput crystallography identified an oxindole fragment bound to the S1 pocket of the protein exhibiting a novel interaction pattern hitherto not observed in chymase inhibitors. X-ray crystallographic structures were used to guide the elaboration/linking of the fragment, ultimately leading to a potent inhibitor that was >100-fold selective over cathepsin G and that mitigated a number of liabilities associated with poor physicochemical properties of the series it was derived from.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Humans Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Humans Idioma: En Ano de publicação: 2013 Tipo de documento: Article