Your browser doesn't support javascript.
loading
Gel-based nonradioactive single-strand conformational polymorphism and mutation detection: limitations and solutions.
Gupta, Vibhuti; Arora, Reetakshi; Gochhait, Sailesh; Bairwa, Narendra K; Bamezai, Rameshwar N K.
Afiliação
  • Gupta V; Human Genetics Section, School of Life Sciences, National Centre of Applied Human Genetics, Jawaharlal Nehru University, New Meharuli Road, New Delhi, 110067, India.
Methods Mol Biol ; 1105: 365-80, 2014.
Article em En | MEDLINE | ID: mdl-24623242
ABSTRACT
Single-strand conformation polymorphism (SSCP) for screening mutations/single-nucleotide polymorphisms (SNPs) is a simple, cost-effective technique, saving an expensive exercise of sequencing each and every polymerase chain reaction product and assisting in choosing only the amplicons of interest with expected mutations. The principle of detection of small changes in DNA sequences is based on changes in single-strand DNA conformations. The changes in electrophoretic mobility that SSCP detects are sequence dependent. The limitations faced in SSCP range from routine polyacrylamide gel electrophoresis (PAGE) problems to the problems of resolving mutant DNA bands. Both these problems can be solved by controlling PAGE conditions and by varying physical and environmental conditions such as pH, temperature, voltage, gel type and percentage, addition of additives or denaturants, and others. Despite much upgrading of the technology for mutation detection, SSCP remains the method of choice to analyze mutations and SNPs in order to understand genomic variations, both spontaneous and induced, and the genetic basis of diseases.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article