Your browser doesn't support javascript.
loading
Does function fit structure? A ground truth for non-invasive neuroimaging.
Stevenson, Claire; Brookes, Matthew; López, José David; Troebinger, Luzia; Mattout, Jeremie; Penny, William; Morris, Peter; Hillebrand, Arjan; Henson, Richard; Barnes, Gareth.
Afiliação
  • Stevenson C; School of Physics and Astronomy, Nottingam, UK.
  • Brookes M; School of Physics and Astronomy, Nottingam, UK.
  • López JD; SISTEMIC, Engineering Faculty, Universidad de Antioquia, Medellín, Colombia.
  • Troebinger L; Wellcome Trust Centre for Neuroimaging, London, UK.
  • Mattout J; INSERM, Lyon, France.
  • Penny W; Wellcome Trust Centre for Neuroimaging, London, UK.
  • Morris P; School of Physics and Astronomy, Nottingam, UK.
  • Hillebrand A; VU University Medical Center, Amsterdam, The Netherlands.
  • Henson R; MRC CBU, Cambridge, UK.
  • Barnes G; Wellcome Trust Centre for Neuroimaging, London, UK. Electronic address: g.barnes@ucl.ac.uk.
Neuroimage ; 94: 89-95, 2014 Jul 01.
Article em En | MEDLINE | ID: mdl-24636880
ABSTRACT
There are now a number of non-invasive methods to image human brain function in-vivo. However, the accuracy of these images remains unknown and can currently only be estimated through the use of invasive recordings to generate a functional ground truth. Neuronal activity follows grey matter structure and accurate estimates of neuronal activity will have stronger support from accurate generative models of anatomy. Here we introduce a general framework that, for the first time, enables the spatial distortion of a functional brain image to be estimated empirically. We use a spherical harmonic decomposition to modulate each cortical hemisphere from its original form towards progressively simpler structures, ending in an ellipsoid. Functional estimates that are not supported by the simpler cortical structures have less inherent spatial distortion. This method allows us to compare directly between magnetoencephalography (MEG) source reconstructions based upon different assumption sets without recourse to functional ground truth.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article