Your browser doesn't support javascript.
loading
The zeamine antibiotics affect the integrity of bacterial membranes.
Masschelein, Joleen; Clauwers, Charlien; Stalmans, Karen; Nuyts, Koen; De Borggraeve, Wim; Briers, Yves; Aertsen, Abram; Michiels, Chris W; Lavigne, Rob.
Afiliação
  • Masschelein J; Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, Heverlee, Belgium.
  • Clauwers C; Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, Heverlee, Belgium.
  • Stalmans K; Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium.
  • Nuyts K; Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Heverlee, Belgium.
  • De Borggraeve W; Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Heverlee, Belgium.
  • Briers Y; Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium.
  • Aertsen A; Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, Heverlee, Belgium.
  • Michiels CW; Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, Heverlee, Belgium.
  • Lavigne R; Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium rob.lavigne@biw.kuleuven.be.
Appl Environ Microbiol ; 81(3): 1139-46, 2015 Feb.
Article em En | MEDLINE | ID: mdl-25452285
The zeamines (zeamine, zeamine I, and zeamine II) constitute an unusual class of cationic polyamine-polyketide-nonribosomal peptide antibiotics produced by Serratia plymuthica RVH1. They exhibit potent bactericidal activity, killing a broad range of Gram-negative and Gram-positive bacteria, including multidrug-resistant pathogens. Examination of their specific mode of action and molecular target revealed that the zeamines affect the integrity of cell membranes. The zeamines provoke rapid release of carboxyfluorescein from unilamellar vesicles with different phospholipid compositions, demonstrating that they can interact directly with the lipid bilayer in the absence of a specific target. DNA, RNA, fatty acid, and protein biosynthetic processes ceased simultaneously at subinhibitory levels of the antibiotics, presumably as a direct consequence of membrane disruption. The zeamine antibiotics also facilitated the uptake of small molecules, such as 1-N-phenylnaphtylamine, indicating their ability to permeabilize the Gram-negative outer membrane (OM). The valine-linked polyketide moiety present in zeamine and zeamine I was found to increase the efficiency of this process. In contrast, translocation of the large hydrophilic fluorescent peptidoglycan binding protein PBDKZ-GFP was not facilitated, suggesting that the zeamines cause subtle perturbation of the OM rather than drastic alterations or defined pore formation. At zeamine concentrations above those required for growth inhibition, membrane lysis occurred as indicated by time-lapse microscopy. Together, these findings show that the bactericidal activity of the zeamines derives from generalized membrane permeabilization, which likely is initiated by electrostatic interactions with negatively charged membrane components.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2015 Tipo de documento: Article