Your browser doesn't support javascript.
loading
Down-regulation of suppressor of cytokine signaling 3 by miR-122 enhances interferon-mediated suppression of hepatitis B virus.
Gao, Dongni; Zhai, Aixia; Qian, Jun; Li, Aimei; Li, Yujun; Song, Wuqi; Zhao, Hong; Yu, Xin; Wu, Jing; Zhang, Qingmeng; Kao, Wenping; Wei, Lanlan; Zhang, Fengmin; Zhong, Zhaohua.
Afiliação
  • Gao D; Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin 150086, Heilongjiang, China; Laboratory of Microbiology, College of Life Science, Heilongjiang University, Harbin, China.
  • Zhai A; Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin 150086, Heilongjiang, China.
  • Qian J; Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin 150086, Heilongjiang, China.
  • Li A; Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin 150086, Heilongjiang, China.
  • Li Y; Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin 150086, Heilongjiang, China.
  • Song W; Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin 150086, Heilongjiang, China.
  • Zhao H; Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin 150086, Heilongjiang, China.
  • Yu X; Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin 150086, Heilongjiang, China.
  • Wu J; Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin 150086, Heilongjiang, China.
  • Zhang Q; Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin 150086, Heilongjiang, China.
  • Kao W; Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin 150086, Heilongjiang, China.
  • Wei L; Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin 150086, Heilongjiang, China.
  • Zhang F; Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin 150086, Heilongjiang, China. Electronic address: fengminzhang@ems.hrbmu.edu.cn.
  • Zhong Z; Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, The Heilongjiang Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin 150086, Heilongjiang, China. Electronic address: zhongzh@ems.hrbmu.edu.cn.
Antiviral Res ; 118: 20-8, 2015 Jun.
Article em En | MEDLINE | ID: mdl-25766860
MicroRNA-122 (miR-122) is involved in the pathogenesis of several liver diseases, including chronic hepatitis B infection and hepatocellular carcinoma. This study aimed to explore the potential role of miR-122 in the interferon (IFN)-mediated suppression of hepatitis B virus (HBV) in hepatocytes. We found that elevated expression of suppressor of cytokine signaling 3 (SOCS3) following HBV infection, contributed to the inactivation of the IFN signaling pathway. Based on previous studies from our laboratory showing that miR-122 can modulate type I IFN expression by inhibiting SOCS1 expression, we analyzed the SOCS3 mRNA sequence for putative miR-122 binding sites. We demonstrate that miR-122 inhibits SOCS3 expression by targeting the 3'-untranslated region of the SOCS3 mRNA within the region 1887-1910 nucleotides. Finally, we demonstrate that significantly increased levels of IFN lead to decreased HBV expression in miR-122 mimic-treated Huh7 cells, whereas inhibition of endogenous miR-122 leads to enhanced viral production, owing to a marked decrease in IFN expression. Taken together, our results demonstrate that miR-122 down-regulates SOCS3, thus positively affecting the anti-HBV efficiency of endogenous type I IFN. Our study suggests that suppression of miR-122 induced by HBV infection, leads to the inactivation of IFN expression, which in turn enhances HBV replication, contributing to viral persistence and hepatocarcinogenesis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article