Your browser doesn't support javascript.
loading
Calpain Cleaves Most Components in the Multiple Aminoacyl-tRNA Synthetase Complex and Affects Their Functions.
Lei, Hui-Yan; Zhou, Xiao-Long; Ruan, Zhi-Rong; Sun, Wei-Cheng; Eriani, Gilbert; Wang, En-Duo.
Afiliação
  • Lei HY; From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, University of Chinese Academy of Sciences, Beijing 100039, China.
  • Zhou XL; From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, University of Chinese Academy of Sciences, Beijing 100039, China.
  • Ruan ZR; From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, University of Chinese Academy of Sciences, Beijing 100039, China.
  • Sun WC; From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, University of Chinese Academy of Sciences, Beijing 100039, China, The School of Life Sc
  • Eriani G; Architecture et Réactivité de l'ARN, Université de Strasbourg, UPR9002 CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France.
  • Wang ED; From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, University of Chinese Academy of Sciences, Beijing 100039, China, The School of Life Sc
J Biol Chem ; 290(43): 26314-27, 2015 Oct 23.
Article em En | MEDLINE | ID: mdl-26324710
ABSTRACT
Nine aminoacyl-tRNA synthetases (aaRSs) and three scaffold proteins form a super multiple aminoacyl-tRNA synthetase complex (MSC) in the human cytoplasm. Domains that have been added progressively to MSC components during evolution are linked by unstructured flexible peptides, producing an elongated and multiarmed MSC structure that is easily attacked by proteases in vivo. A yeast two-hybrid screen for proteins interacting with LeuRS, a representative MSC member, identified calpain 2, a calcium-activated neutral cysteine protease. Calpain 2 and calpain 1 could partially hydrolyze most MSC components to generate specific fragments that resembled those reported previously. The cleavage sites of calpain in ArgRS, GlnRS, and p43 were precisely mapped. After cleavage, their N-terminal regions were removed. Sixty-three amino acid residues were removed from the N terminus of ArgRS to form ArgRSΔN63; GlnRS formed GlnRSΔN198, and p43 formed p43ΔN106. GlnRSΔN198 had a much weaker affinity for its substrates, tRNA(Gln) and glutamine. p43ΔN106 was the same as the previously reported p43-derived apoptosis-released factor. The formation of p43ΔN106 by calpain depended on Ca(2+) and could be specifically inhibited by calpeptin and by RNAi of the regulatory subunit of calpain in vivo. These results showed, for the first time, that calpain plays an essential role in dissociating the MSC and might regulate the canonical and non-canonical functions of certain components of the MSC.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article