Your browser doesn't support javascript.
loading
Neurofibromin is a novel regulator of Ras-induced reactive oxygen species production in mice and humans.
Bessler, Waylan K; Hudson, Farlyn Z; Zhang, Hanfang; Harris, Valerie; Wang, Yusi; Mund, Julie A; Downing, Brandon; Ingram, David A; Case, Jamie; Fulton, David J; Stansfield, Brian K.
Afiliação
  • Bessler WK; Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Biochemistry and Molecular Biolog
  • Hudson FZ; Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States.
  • Zhang H; Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States.
  • Harris V; Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States.
  • Wang Y; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States.
  • Mund JA; Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States; Melvin and Bren Simon Cancer Center, Indiana Un
  • Downing B; Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States.
  • Ingram DA; Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Biochemistry and Molecular Biolog
  • Case J; Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis 46202, United States; Scripps Clinic Medical Group, Center for Organ and Cell Transplantat
  • Fulton DJ; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States.
  • Stansfield BK; Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States. Electronic address: bstansfield@augusta.edu.
Free Radic Biol Med ; 97: 212-222, 2016 08.
Article em En | MEDLINE | ID: mdl-27266634
Neurofibromatosis type 1 (NF1) predisposes individuals to early and debilitating cardiovascular disease. Loss of function mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin, leads to accelerated p21(Ras) activity and phosphorylation of multiple downstream kinases, including Erk and Akt. Nf1 heterozygous (Nf1(+/-)) mice develop a robust neointima that mimics human disease. Monocytes/macrophages play a central role in NF1 arterial stenosis as Nf1 mutations in myeloid cells alone are sufficient to reproduce the enhanced neointima observed in Nf1(+/-) mice. Though the molecular mechanisms underlying NF1 arterial stenosis remain elusive, macrophages are important producers of reactive oxygen species (ROS) and Ras activity directly regulates ROS production. Here, we use compound mutant and lineage-restricted mice to demonstrate that Nf1(+/-) macrophages produce excessive ROS, which enhance Nf1(+/-) smooth muscle cell proliferation in vitro and in vivo. Further, use of a specific NADPH oxidase-2 inhibitor to limit ROS production prevents neointima formation in Nf1(+/-) mice. Finally, mononuclear cells from asymptomatic NF1 patients have increased oxidative DNA damage, an indicator of chronic exposure to oxidative stress. These data provide genetic and pharmacologic evidence that excessive exposure to oxidant species underlie NF1 arterial stenosis and provide a platform for designing novels therapies and interventions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article