Your browser doesn't support javascript.
loading
Catestatin Gly364Ser Variant Alters Systemic Blood Pressure and the Risk for Hypertension in Human Populations via Endothelial Nitric Oxide Pathway.
Kiranmayi, Malapaka; Chirasani, Venkat R; Allu, Prasanna K R; Subramanian, Lakshmi; Martelli, Elizabeth E; Sahu, Bhavani S; Vishnuprabu, Durairajpandian; Kumaragurubaran, Rathnakumar; Sharma, Saurabh; Bodhini, Dhanasekaran; Dixit, Madhulika; Munirajan, Arasambattu K; Khullar, Madhu; Radha, Venkatesan; Mohan, Viswanathan; Mullasari, Ajit S; Naga Prasad, Sathyamangla V; Senapati, Sanjib; Mahapatra, Nitish R.
Afiliação
  • Kiranmayi M; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Chirasani VR; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Allu PK; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Subramanian L; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Martelli EE; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Sahu BS; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Vishnuprabu D; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Kumaragurubaran R; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Sharma S; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Bodhini D; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Dixit M; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Munirajan AK; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Khullar M; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Radha V; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Mohan V; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Mullasari AS; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Naga Prasad SV; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Senapati S; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
  • Mahapatra NR; From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Clevelan
Hypertension ; 68(2): 334-47, 2016 08.
Article em En | MEDLINE | ID: mdl-27324226
ABSTRACT
Catestatin (CST), an endogenous antihypertensive/antiadrenergic peptide, is a novel regulator of cardiovascular physiology. Here, we report case-control studies in 2 geographically/ethnically distinct Indian populations (n≈4000) that showed association of the naturally-occurring human CST-Gly364Ser variant with increased risk for hypertension (age-adjusted odds ratios 1.483; P=0.009 and 2.951; P=0.005). Consistently, 364Ser allele carriers displayed elevated systolic (up to ≈8 mm Hg; P=0.004) and diastolic (up to ≈6 mm Hg; P=0.001) blood pressure. The variant allele was also found to be in linkage disequilibrium with other functional single-nucleotide polymorphisms in the CHGA promoter and nearby coding region. Functional characterization of the Gly364Ser variant was performed using cellular/molecular biological experiments (viz peptide-receptor binding assays, nitric oxide [NO], phosphorylated extracellular regulated kinase, and phosphorylated endothelial NO synthase estimations) and computational approaches (molecular dynamics simulations for structural analysis of wild-type [CST-WT] and variant [CST-364Ser] peptides and docking of peptide/ligand with ß-adrenergic receptors [ADRB1/2]). CST-WT and CST-364Ser peptides differed profoundly in their secondary structures and showed differential interactions with ADRB2; although CST-WT displaced the ligand bound to ADRB2, CST-364Ser failed to do the same. Furthermore, CST-WT significantly inhibited ADRB2-stimulated extracellular regulated kinase activation, suggesting an antagonistic role towards ADRB2 unlike CST-364Ser. Consequently, CST-WT was more potent in NO production in human umbilical vein endothelial cells as compared with CST-364Ser. This NO-producing ability of CST-WT was abrogated by ADRB2 antagonist ICI 118551. In conclusion, CST-364Ser allele enhanced the risk for hypertension in human populations, possibly via diminished endothelial NO production because of altered interactions of CST-364Ser peptide with ADRB2 as compared with CST-WT.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Observational_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male / Middle aged País/Região como assunto: Asia Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Observational_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male / Middle aged País/Região como assunto: Asia Idioma: En Ano de publicação: 2016 Tipo de documento: Article