(1)H(N), (13)C, and (15)N resonance assignments of the CDTb-interacting domain (CDTaBID) from the Clostridium difficile binary toxin catalytic component (CDTa, residues 1-221).
Biomol NMR Assign
; 10(2): 335-9, 2016 10.
Article
em En
| MEDLINE
| ID: mdl-27351891
Once considered a relatively harmless bacterium, Clostridium difficile has become a major concern for healthcare facilities, now the most commonly reported hospital-acquired pathogen. C. difficile infection (CDI) is usually contracted when the normal gut microbiome is compromised by antibiotic therapy, allowing the opportunistic pathogen to grow and produce its toxins. The severity of infection ranges from watery diarrhea and abdominal cramping to pseudomembranous colitis, sepsis, or death. The past decade has seen a marked increase in the frequency and severity of CDI among industrialized nations owing directly to the emergence of a highly virulent C. difficile strain, NAP1. Along with the large Clostridial toxins expressed by non-epidemic strains, C. difficile NAP1 produces a binary toxin, C. difficile transferase (CDT). As the name suggests, CDT is a two-component toxin comprised of an ADP-ribosyltransferase (ART) component (CDTa) and a cell-binding/translocation component (CDTb) that function to destabilize the host cytoskeleton by covalent modification of actin monomers. Central to the mechanism of binary toxin-induced pathogenicity is the formation of CDTa/CDTb complexes at the cell surface. From the perspective of CDTa, this interaction is mediated by the N-terminal domain (residues 1-215) and is spatially and functionally independent of ART activity, which is located in the C-terminal domain (residues 216-420). Here we report the (1)H(N), (13)C, and (15)N backbone resonance assignments of a 221 amino acid, ~26 kDa N-terminal CDTb-interacting domain (CDTaBID) construct by heteronuclear NMR spectroscopy. These NMR assignments represent the first component coordination domain for a family of Clostridium or Bacillus species harboring ART activity. Our assignments lay the foundation for detailed solution state characterization of structure-function relationships, toxin complex formation, and NMR-based drug discovery efforts.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2016
Tipo de documento:
Article