Your browser doesn't support javascript.
loading
Bystander Effect Induced by Electroporation is Possibly Mediated by Microvesicles and Dependent on Pulse Amplitude, Repetition Frequency and Cell Type.
Prevc, Ajda; Bedina Zavec, Apolonija; Cemazar, Maja; Kloboves-Prevodnik, Veronika; Stimac, Monika; Todorovic, Vesna; Strojan, Primoz; Sersa, Gregor.
Afiliação
  • Prevc A; Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska ulica 2, 1000, Ljubljana, Slovenia.
  • Bedina Zavec A; National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
  • Cemazar M; Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska ulica 2, 1000, Ljubljana, Slovenia.
  • Kloboves-Prevodnik V; Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia.
  • Stimac M; Department of Cytopathology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia.
  • Todorovic V; Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska ulica 2, 1000, Ljubljana, Slovenia.
  • Strojan P; Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska ulica 2, 1000, Ljubljana, Slovenia.
  • Sersa G; Department of Radiation Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia.
J Membr Biol ; 249(5): 703-711, 2016 10.
Article em En | MEDLINE | ID: mdl-27371159
Bystander effect, a known phenomenon in radiation biology, where irradiated cells release signals which cause damage to nearby, unirradiated cells, has not been explored in electroporated cells yet. Therefore, our aim was to determine whether bystander effect is present in electroporated melanoma cells in vitro, by determining viability of non-electroporated cells exposed to medium from electroporated cells and by the release of microvesicles as potential indicators of the bystander effect. Here, we demonstrated that electroporation of cells induces bystander effect: Cells exposed to electric pulses mediated their damage to the non-electroporated cells, thus decreasing cell viability. We have shown that shedding microvesicles may be one of the ways used by the cells to mediate the death signals to the neighboring cells. The murine melanoma B16F1 cell line was found to be more electrosensitive and thus more prone to bystander effect than the canine melanoma CMeC-1 cell line. In B16F1 cell line, bystander effect was present above the level of electropermeabilization of the cells, with the threshold at 800 V/cm. Furthermore, with increasing electric field intensities and the number of pulses, the bystander effect also increased. In conclusion, electroporation can induce bystander effect which may be mediated by microvesicles, and depends on pulse amplitude, repetition frequency and cell type.
Assuntos
Palavras-chave
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article