Your browser doesn't support javascript.
loading
Protective efficacy of cationic-PLGA microspheres loaded with DNA vaccine encoding the sip gene of Streptococcus agalactiae in tilapia.
Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Ma, Jiang-Yao; Hao, Le; Liu, Zhen-Xing.
Afiliação
  • Ma YP; Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Guangdong Open Laboratory of Veterinary Public Health; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
  • Ke H; Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Guangdong Open Laboratory of Veterinary Public Health; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China. Electronic address: keha@tom.com.
  • Liang ZL; Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Guangdong Open Laboratory of Veterinary Public Health; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
  • Ma JY; Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Guangdong Open Laboratory of Veterinary Public Health; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
  • Hao L; Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Guangdong Open Laboratory of Veterinary Public Health; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
  • Liu ZX; Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Guangdong Open Laboratory of Veterinary Public Health; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China. Electronic address: liuzhenxing81@126.com.
Fish Shellfish Immunol ; 66: 345-353, 2017 Jul.
Article em En | MEDLINE | ID: mdl-28476676
ABSTRACT
Streptococcus agalactiae (S. agalactiae) is an important fish pathogen, which has received more attention in the past decade due to the increasing economic losses in the tilapia industry worldwide. As existing effective vaccines of S. agalactiae in fish have obvious disadvantage, to select immunoprotective antigens and package materials would undoubtedly contribute to the development of novel oral vaccines. In the present study, surface immunogenic protein (sip) was selected from the S. agalactiae serovar I a genomes as immunogenic protein in DNA vaccine form with cationic chitosan and biodegradable and biocompatible PLGA. The pcSip plasmid in cationic-PLGA was successfully expressed in tissues of immunized tilapia and the immunogenicity was assessed in tilapia challenge model. A significant increase was observed in the cytokine levels of IL-1ß, TNF-α, CC1, CC2 in spleen and kidney tissues. Furthermore, immunized tilapia conferred different levels of protection against challenge with a lethal dose of highly virulent serovar I a S. agalactiae. Our results indicated that the pcSip plasmid in cationic-PLGA induced high level of antibodies and protection against S. agalactiae infection, could be effective oral DNA vaccine candidates.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article