Your browser doesn't support javascript.
loading
Single-cell RNA-Seq analysis reveals dynamic trajectories during mouse liver development.
Su, Xianbin; Shi, Yi; Zou, Xin; Lu, Zhao-Ning; Xie, Gangcai; Yang, Jean Y H; Wu, Chong-Chao; Cui, Xiao-Fang; He, Kun-Yan; Luo, Qing; Qu, Yu-Lan; Wang, Na; Wang, Lan; Han, Ze-Guang.
Afiliação
  • Su X; Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Shi Y; Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Zou X; Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Lu ZN; Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Xie G; Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yueyang Road, Shanghai, China.
  • Yang JYH; School of Mathematics and Statistics, The University of Sydney, Sydney, Australia.
  • Wu CC; Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Cui XF; Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • He KY; Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Luo Q; Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Qu YL; Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Wang N; Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Wang L; Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
  • Han ZG; Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China. hanzg@sjtu.edu.cn.
BMC Genomics ; 18(1): 946, 2017 Dec 04.
Article em En | MEDLINE | ID: mdl-29202695
ABSTRACT

BACKGROUND:

The differentiation and maturation trajectories of fetal liver stem/progenitor cells (LSPCs) are not fully understood at single-cell resolution, and a priori knowledge of limited biomarkers could restrict trajectory tracking.

RESULTS:

We employed marker-free single-cell RNA-Seq to characterize comprehensive transcriptional profiles of 507 cells randomly selected from seven stages between embryonic day 11.5 and postnatal day 2.5 during mouse liver development, and also 52 Epcam-positive cholangiocytes from postnatal day 3.25 mouse livers. LSPCs in developing mouse livers were identified via marker-free transcriptomic profiling. Single-cell resolution dynamic developmental trajectories of LSPCs exhibited contiguous but discrete genetic control through transcription factors and signaling pathways. The gene expression profiles of cholangiocytes were more close to that of embryonic day 11.5 rather than other later staged LSPCs, cuing the fate decision stage of LSPCs. Our marker-free approach also allows systematic assessment and prediction of isolation biomarkers for LSPCs.

CONCLUSIONS:

Our data provide not only a valuable resource but also novel insights into the fate decision and transcriptional control of self-renewal, differentiation and maturation of LSPCs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article