Your browser doesn't support javascript.
loading
Proteotranscriptomic Analysis and Discovery of the Profile and Diversity of Toxin-like Proteins in Centipede.
Zhao, Feng; Lan, Xinqiang; Li, Tao; Xiang, Yang; Zhao, Fang; Zhang, Yun; Lee, Wen-Hui.
Afiliação
  • Zhao F; From the ‡Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, China; zhaofeng@mail.kiz.ac.c
  • Lan X; §Key Laboratory of Subtropical Medicinal Edible Resources Development and Utilization in Yunnan Province, Department of Biology and Chemistry, Puer University, 6 Xueyuan Road, Puer, Yunnan 665000, China.
  • Li T; ¶Institute of Comparative Study of Traditional Materia Medica, Institute of Integrative Medicine of Fudan University, Shanghai China.
  • Xiang Y; From the ‡Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, China.
  • Zhao F; ‖Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.
  • Zhang Y; §Key Laboratory of Subtropical Medicinal Edible Resources Development and Utilization in Yunnan Province, Department of Biology and Chemistry, Puer University, 6 Xueyuan Road, Puer, Yunnan 665000, China.
  • Lee WH; ¶Institute of Comparative Study of Traditional Materia Medica, Institute of Integrative Medicine of Fudan University, Shanghai China.
Mol Cell Proteomics ; 17(4): 709-720, 2018 04.
Article em En | MEDLINE | ID: mdl-29339413
ABSTRACT
Centipedes are one of the oldest venomous animals and use their venoms as weapons to attack prey or protect themselves. Their venoms contain various components with different biomedical and pharmacological properties. However, little attention has been paid to the profiles and diversity of their toxin-like proteins/peptides. In this study, we used a proteotranscriptomic approach to uncover the diversity of centipede toxin-like proteins in Scolopendra subspinipes mutilans Nine hundred twenty-three and 6,736 peptides, which were separately isolated from venom and torso tissues, respectively, were identified by ESI-MS/MS and deduced from their transcriptomes. Finally, 1369 unique proteins were identified in the proteome, including 100 proteins that exhibited overlapping expression in venom and torso tissues. Of these proteins, at least 40 proteins were identified as venom toxin-like proteins. Meanwhile, transcriptome mining identified ∼10-fold more toxin-like proteins and enabled the characterization of the precursor architecture of mature toxin-like peptides. Importantly, combined with proteomic and transcriptomic analyses, 25 toxin-like proteins/peptides (neurotoxins accounted for 50%) were expressed outside the venom gland and involved in gene recruitment processes. These findings highlight the extensive diversity of centipede toxin-like proteins and provide a new foundation for the medical-pharmaceutical use of centipede toxin-like proteins. Moreover, we are the first group to report the gene recruitment activity of venom toxin-like proteins in centipede, similar to snakes.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article