Your browser doesn't support javascript.
loading
Doxorubicin-induced DNA Damage Causes Extensive Ubiquitination of Ribosomal Proteins Associated with a Decrease in Protein Translation.
Halim, Vincentius A; García-Santisteban, Iraia; Warmerdam, Daniel O; van den Broek, Bram; Heck, Albert J R; Mohammed, Shabaz; Medema, René H.
Afiliação
  • Halim VA; Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands; Division of Cell Biology and Cancer
  • García-Santisteban I; Division of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
  • Warmerdam DO; Division of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713 AV Groningen, The Netherlands.
  • van den Broek B; Division of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
  • Heck AJR; Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands.
  • Mohammed S; Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands; Department of Biochemistry, Universi
  • Medema RH; Division of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands. Electronic address: r.medema@nki.nl.
Mol Cell Proteomics ; 17(12): 2297-2308, 2018 12.
Article em En | MEDLINE | ID: mdl-29438997
ABSTRACT
Protein posttranslational modifications (PTMs) play a central role in the DNA damage response. In particular, protein phosphorylation and ubiquitination have been shown to be essential in the signaling cascade that coordinates break repair with cell cycle progression. Here, we performed whole-cell quantitative proteomics to identify global changes in protein ubiquitination that are induced by DNA double-strand breaks. In total, we quantified more than 9,400 ubiquitin sites and found that the relative abundance of ∼10% of these sites was altered in response to DNA double-strand breaks. Interestingly, a large proportion of ribosomal proteins, including those from the 40S as well as the 60S subunit, were ubiquitinated in response to DNA damage. In parallel, we discovered that DNA damage leads to the inhibition of ribosome function. Taken together, these data uncover the ribosome as a major target of the DNA damage response.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article