Your browser doesn't support javascript.
loading
Ectopic expression of GhCOBL9A, a cotton glycosyl-phosphatidyl inositol-anchored protein encoding gene, promotes cell elongation, thickening and increased plant biomass in transgenic Arabidopsis.
Niu, Erli; Fang, Shuai; Shang, Xiaoguang; Guo, Wangzhen.
Afiliação
  • Niu E; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
  • Fang S; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
  • Shang X; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
  • Guo W; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China. moelab@njau.edu.cn.
Mol Genet Genomics ; 293(5): 1191-1204, 2018 Oct.
Article em En | MEDLINE | ID: mdl-29869696
ABSTRACT
Cellulose is a major component of plant cell walls and is necessary for plant morphogenesis and biomass. COBL (COBRA-Like) proteins have been shown to be key regulators in the orientation of cell expansion and cellulose crystallinity status. To clarify the role of a cotton COBL gene, GhCOBL9A, we conducted the ectopic expression and functional analysis in Arabidopsis. Previous study showed that GhCOBL9A was preferentially expressed during secondary cell wall biosynthesis in cotton fibers, and showed a significant co-expression pattern with cellulose synthase genes. Here, we detected that overexpression of GhCOBL9A induced the up-regulation of genes related to cellulose synthesis and enhanced the cellulose deposition. As a result, GhCOBL9A transgenic plants displayed increased hypocotyl and root lengths in early development, and cell wall thickening at the SCW stage. Notably, overexpression of GhCOBL9A led to an erect, robust-stature phenotype and brought higher biomass in mature plants. In addition, overexpression of GhCOBL9A in Arabidopsis AtCOBL4 mutants, a paralogous gene of GhCOBL9A, also led to a stronger growth potential, but the Atcobl4 mutant phenotype could not be rescued, implying the functional divergence of GhCOBL9A and AtCOBL4 paralogs. Taken together, these results suggest that overexpression of GhCOBL9A contributes to plant cell elongation and thickening, and increased biomass, which provides references for further utilizing GhCOBL9A to improve yield and quality traits in cotton and other species.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article