Your browser doesn't support javascript.
loading
Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies.
Ehteshami Bejnordi, Babak; Mullooly, Maeve; Pfeiffer, Ruth M; Fan, Shaoqi; Vacek, Pamela M; Weaver, Donald L; Herschorn, Sally; Brinton, Louise A; van Ginneken, Bram; Karssemeijer, Nico; Beck, Andrew H; Gierach, Gretchen L; van der Laak, Jeroen A W M; Sherman, Mark E.
Afiliação
  • Ehteshami Bejnordi B; Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
  • Mullooly M; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
  • Pfeiffer RM; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
  • Fan S; Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA.
  • Vacek PM; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
  • Weaver DL; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
  • Herschorn S; Department of Medical Biostatistics, University of Vermont, Burlington, VT, USA.
  • Brinton LA; Department of Pathology, University of Vermont, Burlington, VT, USA.
  • van Ginneken B; University of Vermont Cancer Center, Burlington, VT, USA.
  • Karssemeijer N; Department of Radiology, University of Vermont, Burlington, VT, USA.
  • Beck AH; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
  • Gierach GL; Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
  • van der Laak JAWM; Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
  • Sherman ME; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
Mod Pathol ; 31(10): 1502-1512, 2018 10.
Article em En | MEDLINE | ID: mdl-29899550
The breast stromal microenvironment is a pivotal factor in breast cancer development, growth and metastases. Although pathologists often detect morphologic changes in stroma by light microscopy, visual classification of such changes is subjective and non-quantitative, limiting its diagnostic utility. To gain insights into stromal changes associated with breast cancer, we applied automated machine learning techniques to digital images of 2387 hematoxylin and eosin stained tissue sections of benign and malignant image-guided breast biopsies performed to investigate mammographic abnormalities among 882 patients, ages 40-65 years, that were enrolled in the Breast Radiology Evaluation and Study of Tissues (BREAST) Stamp Project. Using deep convolutional neural networks, we trained an algorithm to discriminate between stroma surrounding invasive cancer and stroma from benign biopsies. In test sets (928 whole-slide images from 330 patients), this algorithm could distinguish biopsies diagnosed as invasive cancer from benign biopsies solely based on the stromal characteristics (area under the receiver operator characteristics curve = 0.962). Furthermore, without being trained specifically using ductal carcinoma in situ as an outcome, the algorithm detected tumor-associated stroma in greater amounts and at larger distances from grade 3 versus grade 1 ductal carcinoma in situ. Collectively, these results suggest that algorithms based on deep convolutional neural networks that evaluate only stroma may prove useful to classify breast biopsies and aid in understanding and evaluating the biology of breast lesions.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Aged / Female / Humans / Middle aged Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Aged / Female / Humans / Middle aged Idioma: En Ano de publicação: 2018 Tipo de documento: Article