Your browser doesn't support javascript.
loading
Semiconducting π-Extended Tetrathiafulvalene Derivatives.
Yamada, Hiroko; Yamashita, Masataka; Hayashi, Hironobu; Suzuki, Mitsuharu; Aratani, Naoki.
Afiliação
  • Yamada H; Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
  • Yamashita M; Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
  • Hayashi H; Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
  • Suzuki M; Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
  • Aratani N; Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
Chemistry ; 24(70): 18601-18612, 2018 Dec 12.
Article em En | MEDLINE | ID: mdl-30033615
ABSTRACT
Tetrathiafulvalene (TTF) has been one of the most studied compounds, since the discovery of electrical conductivity as a charge-transfer complex in combination with tetracyano-p-quinodimethane (TCNQ) in 1973. In 2004, TTF was realized in a new light as an innate semiconductor material, as well as conductor and superconductor material. Because of the ready modification of its core skeleton and better solubility than that of acene compounds, many TTF derivatives have been reported to attain better charge-carrier mobility for field-effect transistor devices. Considering the high charge-carrier mobility of acene and TTF derivatives, annulation of the acene and TTF moieties is expected to improve the charge-carrier mobilities. This Minireview focuses on the syntheses, crystal structures, and electronic properties of state-of-the-art π-extended TTF derivatives, based on the history of the development of TTF derivatives. The relationship between the packing structure and charge-carrier mobilities is also discussed.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article