Your browser doesn't support javascript.
loading
A Cell Assay for Detecting Anti-PEG Immune Response against PEG-Modified Therapeutics.
Shimizu, Taro; Abu Lila, Amr S; Awata, Mizuki; Kubo, Yukiyo; Mima, Yu; Hashimoto, Yosuke; Ando, Hidenori; Okuhira, Keiichiro; Ishima, Yu; Ishida, Tatsuhiro.
Afiliação
  • Shimizu T; Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan.
  • Abu Lila AS; Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan.
  • Awata M; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
  • Kubo Y; Department of Pharmaceutics, College of Pharmacy, Hail University, Hail, 81442, Saudi Arabia.
  • Mima Y; Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan.
  • Hashimoto Y; Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan.
  • Ando H; Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan.
  • Okuhira K; Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan.
  • Ishima Y; Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan.
  • Ishida T; Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan.
Pharm Res ; 35(11): 223, 2018 Oct 02.
Article em En | MEDLINE | ID: mdl-30280273
PURPOSE: Immunogenicity of PEGylated proteins and nanomedicines represents a potential impediment against their development and use in clinical settings. The purpose of this study is to develop a method for detecting anti-PEG immunity of PEGylated proteins and/or nanomedicines using flow cytometry. METHODS: The binding of fluorescence-labeled mPEG-modified liposomes to HIK-G11 cells, PEG-specific hybridoma cells, or spleen cells was evaluated by flow cytometry for detecting immunogenicity of PEGylated therapeutics. RESULTS: The fluorescence-labeled methoxy PEG (mPEG)-modified liposomes were efficiently bound to HIK-G11 cells. Such staining with fluorescence-labeled mPEG-modified liposomes was significantly inhibited in the presence of either non-labeled mPEG-modified liposomes or mPEG-modified ovalbumin (OVA) but not polyglycerol-modified liposomes. In addition, we found that mPEG-modified liposomes, highly immunogenic, caused proliferation of PEG-specific cells, while hydroxyl PEG-modified liposomes, less immunogenic, scarcely caused. Furthermore, after intravenous injection of mPEG-modified liposomes, the percentage of PEG-specific cells in the splenocytes, as determined by flow cytometry, corresponded well with the production level of anti-PEG antibodies, as determined by ELISA. CONCLUSIONS: PEG-specific B cell assay we introduced may become a useful method to detect an anti-PEG immune response against PEGylated therapeutics and clarify the mechanism for anti-PEG immune responses.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2018 Tipo de documento: Article