Your browser doesn't support javascript.
loading
Novel mesoporous electrode materials for symmetric, asymmetric and hybrid supercapacitors.
Cherusseri, Jayesh; Sambath Kumar, Kowsik; Choudhary, Nitin; Nagaiah, Narasimha; Jung, Yeonwoong; Roy, Tania; Thomas, Jayan.
Afiliação
  • Cherusseri J; NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, United States of America.
Nanotechnology ; 30(20): 202001, 2019 May 17.
Article em En | MEDLINE | ID: mdl-30754027
Electrochemical capacitors or supercapacitors have achieved great interest in the recent past due to their potential applications ranging from microelectronic devices to hybrid electric vehicles. Supercapacitors can provide high power densities but their inherently low energy density remains a great challenge. The high-performance supercapacitors utilize large electrode surface area for electrochemical double-layer capacitance and/or pseudocapacitance. To enhance the performance of supercapacitors, various strategies have been adopted such as electrode nanostructuring, hybrid electrode designs using nanocomposite electrodes and hybrid supercapacitor (HSC) configurations. Nanoarchitecturing of electrode-active materials is an effective way of enhancing the performance of supercapacitors as it increases the effective electrode surface area for enhanced electrode/electrolyte interaction. In this review, we focus on the recent developments in the novel electrode materials and various hybrid designs used in supercapacitors for obtaining high specific capacitance and energy density. A family of electrode-active materials including carbon nanomaterials, transition metal-oxides, transition metal-nitrides, transition metal-hydroxides, electronically conducting polymers, and their nanocomposites are discussed in detail. The HSC configurations for attaining enhanced supercapacitor performance as well as strategies to integrate with other microelectronic devices/wearable fabrics are also included.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article