Your browser doesn't support javascript.
loading
Validation of distal radius failure load predictions by homogenized- and micro-finite element analyses based on second-generation high-resolution peripheral quantitative CT images.
Arias-Moreno, A J; Hosseini, H S; Bevers, M; Ito, K; Zysset, P; van Rietbergen, B.
Afiliação
  • Arias-Moreno AJ; Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, De Zaale, Groene Loper 15, 5612AP, Eindhoven, The Netherlands.
  • Hosseini HS; Department of Mechanics and Production, Autonomous University of Manizales, Antigua Estación del Ferrocarril, Manizales, Caldas, Colombia.
  • Bevers M; Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014, Bern, Switzerland.
  • Ito K; Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, De Zaale, Groene Loper 15, 5612AP, Eindhoven, The Netherlands.
  • Zysset P; Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, De Zaale, Groene Loper 15, 5612AP, Eindhoven, The Netherlands.
  • van Rietbergen B; Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014, Bern, Switzerland.
Osteoporos Int ; 30(7): 1433-1443, 2019 Jul.
Article em En | MEDLINE | ID: mdl-30997546
ABSTRACT
This study developed a well-standardized and reproducible approach for micro-finite element (mFE) and homogenized-FE (hFE) analyses that can accurately predict the distal radius failure load using either mFE or hFE models when using the approaches and parameters developed in this study.

INTRODUCTION:

Micro-FE analyses based on high-resolution peripheral quantitative CT (HR-pQCT) images are frequently used to predict distal radius failure load. With the introduction of a second-generation HR-pQCT device, however, the default modelling approach no longer provides accurate results. The aim of this study was to develop a well-standardized and reproducible approach for mFE and hFE analyses that can provide precise and accurate results for distal radius failure load predictions based on second-generation HR-pQCT images.

METHODS:

Second-generation HR-pQCT was used to scan the distal 20-mm section of 22 cadaver radii. The sections were excised and mechanically tested afterwards. For these sections, mFE and hFE models were made that were used to identify required material parameters by comparing predicted and measured results. Using these parameters, the models were cropped to represent the 10-mm region recommended for clinical studies to test their performance for failure load prediction.

RESULTS:

After identification of material parameters, the measured failure load of the 20-mm segments was in good agreement with the results of mFE models (R2 = 0.969, slope = 1.035) and hFE models (R2 = 0.966, slope = 0.890). When the models were restricted to the clinical region, mFE still accurately predicted the measured failure load (R2 = 0.955, slope = 1.021), while hFE predictions were precise but tended to overpredict the failure load (R2 = 0.952, slope = 0.780).

CONCLUSIONS:

It was concluded that it is possible to accurately predict the distal radius failure load using either mFE or hFE models when using the approaches and parameters developed in this study.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article