Your browser doesn't support javascript.
loading
Artificial Sensory Memory.
Wan, Changjin; Cai, Pingqiang; Wang, Ming; Qian, Yan; Huang, Wei; Chen, Xiaodong.
Afiliação
  • Wan C; Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
  • Cai P; Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
  • Wang M; Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
  • Qian Y; Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, China.
  • Huang W; Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, China.
  • Chen X; Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China.
Adv Mater ; 32(15): e1902434, 2020 Apr.
Article em En | MEDLINE | ID: mdl-31364219
ABSTRACT
Sensory memory, formed at the beginning while perceiving and interacting with the environment, is considered a primary source of intelligence. Transferring such biological concepts into electronic implementation aims at achieving perceptual intelligence, which would profoundly advance a broad spectrum of applications, such as prosthetics, robotics, and cyborg systems. Here, the recent developments in the design and fabrication of artificial sensory memory devices are summarized and their applications in recognition, manipulation, and learning are highlighted. The emergence of such devices benefits from recent progress in both bioinspired sensing and neuromorphic engineering technologies and derives from abundant inspiration and benchmarks from an improved understanding of biological sensory processing. Increasing attention to this area would offer unprecedented opportunities toward new hardware architecture of artificial intelligence, which could extend the capabilities of digital systems with emotional/psychological attributes. Pending challenges are also addressed to aspects such as integration level, energy efficiency, and functionality, which would undoubtedly shed light on the future development of translational implementations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article