Your browser doesn't support javascript.
loading
Improving the image quality of 3D FLAIR with a spiral MRI technique.
Li, Zhiqiang; Pipe, James G; Ooi, Melvyn B; Kuwabara, Michael; Karis, John P.
Afiliação
  • Li Z; Barrow Neurological Institute, Phoenix, Arizona.
  • Pipe JG; Mayo Clinic, Rochester, Minnesota.
  • Ooi MB; Barrow Neurological Institute, Phoenix, Arizona.
  • Kuwabara M; Philips Healthcare, Gainesville, Florida.
  • Karis JP; Barrow Neurological Institute, Phoenix, Arizona.
Magn Reson Med ; 83(1): 170-177, 2020 01.
Article em En | MEDLINE | ID: mdl-31393038
PURPOSE: Fluid-attenuated inversion recovery (FLAIR) nulls the CSF signal and is widely used in neuro MRI exams. A 3D scan can provide high SNR, contiguous coverage, and reduced sensitivity to through-plane CSF flow. In this work, a 3D spiral FLAIR technique is proposed to improve the image quality of conventional 3D Cartesian FLAIR. METHODS: The 3D spiral FLAIR sequence incorporated a spiral-in/out readout to preserve higher scan efficiency and eliminate off resonance-induced artifacts observed with a commonly implemented spiral-out readout, a compensation approach to minimize phase errors due to the concomitant fields accompanying the spiral gradient, and an adapted variable flip angle scheme to preserve scan efficiency and maintain a long and stable echo train. 3D Cartesian and spiral FLAIR (~6 min each) were acquired on a 3 Tesla scanner from 6 subjects (age range: 31-64 years; mean: 39.5). Two neuroradiologists rated the images in a blinded fashion on a 5-point scale. The noise performance was assessed quantitatively. RESULTS: Compared to 3D Cartesian FLAIR, 3D spiral FLAIR exhibits greater reduction of artifacts from CSF, especially anterior to the brain stem (rated better in 4 cases), artifacts attributed to blood/flow in the deep brain (better or much better in all 6 cases), and superior overall image quality (much better in 5 cases) despite residual susceptibility artifacts near the nasal cavity. Quantitative assessment demonstrates ~1.5× higher average SNR than Cartesian data. CONCLUSION: 3D spiral FLAIR achieves higher SNR, reduced CSF, and blood/flow artifacts, providing an alternative to 3D Cartesian FLAIR for neurological exams.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2020 Tipo de documento: Article