Room temperature readily self-healing polymer via rationally designing molecular chain and crosslinking bond for flexible electrical sensor.
J Colloid Interface Sci
; 559: 152-161, 2020 Feb 01.
Article
em En
| MEDLINE
| ID: mdl-31622817
Mechanically tough polymers with excellent room temperature self-healing capacity have aroused strong interest in soft electronics, electronic skins and flexible energy storage devices. However, achieving such polymers remains a challenge due to tardy diffusion dynamics. Herein, a robust and readily self-healing polymer, which is synthesized by one-pot polymerization among 2,4'-tolylene diisocyanate, isophorone diisocyanate, and poly(oxy-1,4-butanediyl), is achieved through reasonably tuning the hardness of the molecular segment and the strength of the dynamic crosslinking bond. The poly(oxy-1,4-butanediyl) that act as a soft segment can effectively avoid the microphase separation, enabling rapid chain mobility of the polymer at the room temperature. Furthermore, the dual H-bonding from 2,4'-tolylene diisocyanate segment acting as a relatively strong crosslinking bond contributes to high mechanical strength, while the weaker single H-bonding from isophorone diisocyanate segment can efficiently dissipate strain energy by bond rupture, endowing the polymer with rapid room temperature self-healing ability. Featuring state-of-the-art of robust stress strength (≈1.3â¯MPa), high self-healing efficiency (97% within 6â¯h), and large tensile strain (≈2100%), the resulting polymers are used for the fabrication of stretchable and self-healable electrical sensor, which can be employed to monitor a variety of physiological activities in real time. The described strategy is promising and universal for healable materials, displaying great potential for developing soft electronics.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article