Your browser doesn't support javascript.
loading
BRCA1 mutation influences progesterone response in human benign mammary organoids.
Davaadelger, Batzaya; Choi, Mi-Ran; Singhal, Hari; Clare, Susan E; Khan, Seema A; Kim, J Julie.
Afiliação
  • Davaadelger B; Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 4-117, Chicago, IL, 60611, USA.
  • Choi MR; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
  • Singhal H; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
  • Clare SE; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
  • Khan SA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
  • Kim JJ; Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 4-117, Chicago, IL, 60611, USA. j-kim4@northwestern.edu.
Breast Cancer Res ; 21(1): 124, 2019 11 26.
Article em En | MEDLINE | ID: mdl-31771627
BACKGROUND: Women, who carry a germline BRCA1 gene mutation, have a markedly increased risk of developing breast cancer during their lifetime. While BRCA1 carriers frequently develop triple-negative, basal-like, aggressive breast tumors, hormone signaling is important in the genesis of BRCA1 mutant breast cancers. We investigated the hormone response in BRCA1-mutated benign breast tissue using an in vitro organoid system. METHODS: Scaffold-free, multicellular human breast organoids generated from benign breast tissues from non-carrier or BRCA1 mutation carriers were treated in vitro with a stepwise menstrual cycle hormone regimen of estradiol (E2) and progesterone (P4) over the course of 28 days. RESULTS: Breast organoids exhibited characteristics of the native breast tissue, including expression of hormone receptors, collagen production, and markers of luminal and basal epithelium, and stromal fibroblasts. RNA sequencing analysis revealed distinct gene expression in response to hormone treatment in the non-carrier and BRCA1-mutated organoids. The selective progesterone receptor modulator, telapristone acetate (TPA), was used to identify specifically PR regulated genes. Specifically, extracellular matrix organization genes were regulated by E2+P4+TPA in the BRCA1-mutated organoids but not in the non-carrier organoids. In contrast, in the non-carrier organoids, known PR target genes such as the cell cycle genes were inhibited by TPA. CONCLUSIONS: These data show that BRCA1 mutation influences hormone response and in particular PR activity which differs from that of non-carrier organoids. Our organoid model system revealed important insights into the role of PR in BRCA1-mutated benign breast cells and the critical paracrine actions that modify hormone receptor (HR)-negative cells. Further analysis of the molecular mechanism of BRCA1 and PR crosstalk is warranted using this model system.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Female / Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Female / Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article