Your browser doesn't support javascript.
loading
Optimization of NPK fertilization combined with phytoremediation of cadmium contaminated soil by orthogonal experiment.
Wang, Juncai; Chen, Xunfeng; Chi, Yaowei; Chu, Shaohua; Hayat, Kashif; Zhi, Yuee; Hayat, Sikandar; Terziev, Dimitar; Zhang, Dan; Zhou, Pei.
Afiliação
  • Wang J; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China. Electronic address: wangjuncai@sjtu.edu.cn.
  • Chen X; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Chi Y; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Chu S; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Hayat K; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Zhi Y; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Hayat S; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
  • Terziev D; Department of Natural Resource Economics, University of National and World Economy (UNWE), 1700, Sofia, Student Town, Bulgaria.
  • Zhang D; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China. Electronic address: zhdsjtu@sjtu.edu.cn.
  • Zhou P; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai, 200240, China. Electronic address: peizhousjtu@163.com.
Ecotoxicol Environ Saf ; 189: 109997, 2020 Feb.
Article em En | MEDLINE | ID: mdl-31812023
In the current experiment, influence of NPK composition on the Cd contaminated soil-plant (Solanum nigrum L.) system as well as the phytoremediation efficiency were comprehensively studied. The composition of NPK was optimized for a sustainable phytoremediation and simultaneous agronomic technique in Cd-contaminated soil by orthogonal (L14) experiment, aimed to achieve plant productivity and maximum phytoremediation potential enhancement. Results showed that different treatments of NPK composition enhanced soil properties including saccharase, urease, catalase and acid phosphatase activities as compared to the control treatment, however, soil pH was slightly decreased by 3.64%~6.67% with different composition of NPK treatments. Plant biomass and Cd concentration in the aboveground part (stem and leaves) of S. nigrum were significantly (P < 0.05) enhanced by 14.19%~48.97% and 38.50%~127.15% as compared to control plants with the addition of NPK fertilizers having different composition. Meanwhile, with the application of NPK fertilizer root/shoot Cd ratio and translocation factor (TF) was significantly decreased, however, bioconcentration factor (BCF) was increased as compared to control. Additionally, different composition of NPK fertilizers significantly increased photosynthetic pigments (chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids) and soluble protein in comparison to control. The activities of antioxidant enzymes in S. nigrum including ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and glutathione reductase (GR) were increased, while malonaldehyde (MDA) and proline contents were decreased. Principal component analysis (PCA) showed that N3P2K2 treatment had the highest comprehensive score amongst other studied treatments of NPK composition, owing to its optimal composition for the investigated soil-S. nigrum system. Moreover, it was found that optimal composition (N3P2K2) of fertilizer resulted in increase of the plant resistance to Cd and the efficiency of phytoextraction. Therefore, it is suggested to all the small-holder famers and scientific community that precise composition of NPK fertilizer should be utilized according to soil properties, environmental conditions and plant requirements under Cd-stress condition in order to achieve maximum biomass, Cd uptake efficiency as well phytoremediation potential in moderately Cd contaminated soil.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article