Your browser doesn't support javascript.
loading
Valorization of humin as a glucose derivative to fabricate a porous carbon catalyst for esterification and hydroxyalkylation/alkylation.
Yang, Jinfan; Niu, Xiaoru; Wu, Hao; Zhang, Hongyu; Ao, Zhifeng; Zhang, Sufeng.
Afiliação
  • Yang J; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi Univ
  • Niu X; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi Univ
  • Wu H; Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA. Electronic address: lfhwu@ucdavis.edu.
  • Zhang H; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi Univ
  • Ao Z; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi Univ
  • Zhang S; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi Univ
Waste Manag ; 103: 407-415, 2020 Feb 15.
Article em En | MEDLINE | ID: mdl-31952022
A challenge of today's industry is to transform low-value side products into more value-added materials. The acid-catalyzed conversion of hemi(cellulose) to platform chemicals in green chemical/fuel production and biorefinery yields large formation of insoluble byproduct called humin. Herein, humin obtained from dehydration of glucose was transformed into a novel class of effective carbonaceous solid acid catalyst for the first time via low-temperature pyrolysis followed by sulfonation. A range of preparation conditions were investigated, and the structure-function relationships of the resulting catalysts were also discussed based on the analysis of structure and composition. Comparing with the glucose-derived carbon catalyst, the humin-derived catalyst has substantially larger surface area and higher SO3H density, which enable it to display higher catalytic activity and efficiency not only in esterification of levulinic acid and n-butanol (yield = 95.0%, 373 K), but also in hydroxyalkylation/alkylation of 2-methylfuran and furfural (yield = 64.2%, 323 K). Additionally, the catalyst could be repeatedly employed for at least four cycles without obvious deactivation, exhibiting good reusability. This work provides a green method to convert humin byproduct into economic and eco-friendly solid acid catalyst and may contribute to a holistic approach for biomass utilization.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article