Your browser doesn't support javascript.
loading
Genome sequence of the fungus Pycnoporus sanguineus, which produces cinnabarinic acid and pH- and thermo- stable laccases.
Lin, Weiping; Jia, Guangtao; Sun, Hengyi; Sun, Tongyi; Hou, Dianhai.
Afiliação
  • Lin W; School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China; Key Laboratory of Biological Medicines in Universities of Shandong Province; Engineering Laboratory of Protein and Peptide Drugs, Shandong Province.
  • Jia G; School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China; Key Laboratory of Biological Medicines in Universities of Shandong Province; Engineering Laboratory of Protein and Peptide Drugs, Shandong Province.
  • Sun H; School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China.
  • Sun T; School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China; Key Laboratory of Biological Medicines in Universities of Shandong Province; Engineering Laboratory of Protein and Peptide Drugs, Shandong Province. Electronic address: sd_sty@126.com.
  • Hou D; School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China; Key Laboratory of Biological Medicines in Universities of Shandong Province; Engineering Laboratory of Protein and Peptide Drugs, Shandong Province. Electronic address: houdh@wfmc.edu.cn.
Gene ; 742: 144586, 2020 Jun 05.
Article em En | MEDLINE | ID: mdl-32179171
ABSTRACT
Pycnoporus sanguineus, an edible mushroom, produces antimicrobial and antitumor bioactive compounds and pH- and thermo- stable laccases that have multiple potential biotechnological applications. Here we reported the complete genome of the species Pycnoporus sanguineus ACCC 51,180 by using the combination of Illumina HiSeq X Ten and the PacBio sequencing technology. The represented genome is 36.6 Mb composed of 59 scaffolds with 12,086 functionally annotated protein-coding genes. The genome of Pycnoporus sanguineus encodes at least 19 biosynthetic gene clusters for secondary metabolites, including a terpene cluster for biosynthesis of the antitumor clavaric acid. Seven laccases were identified, while 22 genes were found to be involved in the kynurenine pathway in which the intermediate metabolite 3-hydroxyanthranilic acid were catalyzed by laccases into cinnabarinic acid. This study represented the third genome of the genus Pycnoporus, and wound facilitate the exploration of useful sources from Pycnoporus sanguineus for future industrial applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article