Your browser doesn't support javascript.
loading
How will farmed populations of freshwater fish deal with the extreme climate scenario in 2100? Transcriptional responses of Colossoma macropomum from two Brazilian climate regions.
Fé-Gonçalves, Luciana Mara; Araújo, José Deney Alves; Santos, Carlos Henrique Dos Anjos Dos; Val, Adalberto Luis; Almeida-Val, Vera Maria Fonseca de.
Afiliação
  • Fé-Gonçalves LM; Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, André Araújo Avenue, 2936, 69067-375, Petrópolis, Manaus, AM, Brazil. Electronic address: luciana.goncalves@inpa.gov.br.
  • Araújo JDA; Computational Systems Biology Laboratory, University of São Paulo, Professor Lúcio Martins Rodrigues Avenue, 370, 05508020, Butantã, São Paulo, SP, Brazil.
  • Santos CHDAD; Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, André Araújo Avenue, 2936, 69067-375, Petrópolis, Manaus, AM, Brazil.
  • Val AL; Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, André Araújo Avenue, 2936, 69067-375, Petrópolis, Manaus, AM, Brazil.
  • Almeida-Val VMF; Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, André Araújo Avenue, 2936, 69067-375, Petrópolis, Manaus, AM, Brazil.
J Therm Biol ; 89: 102487, 2020 Apr.
Article em En | MEDLINE | ID: mdl-32364997
ABSTRACT
Tambaqui (Colossoma macropomum Cuvier, 1818) is an endemic fish of the Amazon and Orinoco basins, and it is the most economically important native species in Brazil being raised in five climatically distinct regions. In the face of current global warming, environmental variations in farm ponds represent additional challenges that may drive new adaptive regional genetic variations among broodstocks of tambaqui. In an experimental context based on the high-emission scenario of the 5th Intergovernmental Panel on Climate Change (IPCC) report, we used two farmed tambaqui populations to test this hypothesis. RNA-seq transcriptome analysis was performed in the liver of juvenile tambaqui from northern (Balbina Experimental Station, Balbina, AM) and southeastern (Brumado Fish Farming, Mogi Mirim, SP) Brazilian regions kept for 30 days in artificial environmental rooms mimicking the current and extreme climate scenarios. Three Illumina MiSeq runs produced close to 120 million 500 bp paired-end reads; 191,139 contigs were assembled with N50 = 1595. 355 genes were differentially expressed for both populations in response to the extreme scenario. After enrichment analysis, each population presented a core set of genes to cope with climate change. Northern fish induced genes related to the cellular response to stress, activation of MAPK activity, response to unfolded protein, protein metabolism and cellular response to DNA damage stimuli. Genes biologically involved in regulating cell proliferation, protein stabilisation and protein ubiquitination for degradation through the ubiquitin-proteasome system were downregulated. Genes associated with biological processes, including the cellular response to stress, MAPK cascade activation, homeostatic processes and positive regulation of immune responses were upregulated in southeastern fish. The downregulated genes were related to cytoskeleton organisation, energy metabolism, and the regulation of transcription and biological rhythms. Our findings reveal the signatures of promising candidate genes involved in the regional plasticity of each population of tambaqui in dealing with upcoming climate changes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals País/Região como assunto: America do sul / Brasil Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals País/Região como assunto: America do sul / Brasil Idioma: En Ano de publicação: 2020 Tipo de documento: Article