Your browser doesn't support javascript.
loading
Synergistic Effect of Salinized Quinone for Entrapment of Polysulfides for High-Performance Li-S Batteries.
Qu, Gan; Tan, Jiewen; Wu, Hongru; Yu, Zhaozhe; Zhang, Shengliang; Liu, Guangyou; Zheng, Guangyuan Wesley; Tian, Bingbing; Su, Chenliang.
Afiliação
  • Qu G; SZU-NUS Collaborative Innovation Center and International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
  • Tan J; Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260 Singapore.
  • Wu H; SZU-NUS Collaborative Innovation Center and International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
  • Yu Z; SZU-NUS Collaborative Innovation Center and International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
  • Zhang S; SZU-NUS Collaborative Innovation Center and International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
  • Liu G; Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260 Singapore.
  • Zheng GW; SZU-NUS Collaborative Innovation Center and International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
  • Tian B; Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260 Singapore.
  • Su C; SZU-NUS Collaborative Innovation Center and International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
ACS Appl Mater Interfaces ; 12(21): 23867-23873, 2020 May 27.
Article em En | MEDLINE | ID: mdl-32368905
Lithium-sulfur (Li-S) batteries have attracted considerable attention in the energy storage field due to their high theoretical energy density and low price. However, the dissolution of polysulfides and the "shuttle effect" lead to serious capacity degradation, which greatly hinders the industrial application of Li-S batteries. Herein, we propose a bifunctional quinone-type salt to anchor polysulfides and suppress their dissolution for use in high-performance Li-S batteries. We find that the tetrahydroxy-1,4-benzoquinone disodium salt dimer (TBS-dimer) does not dissolve in organic electrolytes and can be generated at 400 °C. The abundant reactive keto groups and double bonds result in the TBS-dimers having numerous "hot spots" for capturing sulfur (TBS/S-400) in the three-dimensional space of the molecule. The insolubility and abundant active sites of the organic salt remarkably suppress the dissolution of lithium polysulfides. As a result, the TBS/S-400 composite delivers a capacity decay rate of only 0.023% per cycle over 600 cycles at 2 C. The use of organic salts to effectively suppress the dissolution of lithium polysulfides opens a new avenue for the practical applications of high-performance Li-S batteries.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article