Your browser doesn't support javascript.
loading
Susceptibility of fall armyworm, Spodoptera frugiperda (J.E.Smmith), to eight insecticides in China, with special reference to lambda-cyhalothrin.
Zhao, Yun-Xia; Huang, Jing-Mei; Ni, Huan; Guo, Di; Yang, Feng-Xia; Wang, Xin; Wu, Shun-Fan; Gao, Cong-Fen.
Afiliação
  • Zhao YX; College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing 210095, Jiangsu, China.
  • Huang JM; College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing 210095, Jiangsu, China.
  • Ni H; College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing 210095, Jiangsu, China.
  • Guo D; College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing 210095, Jiangsu, China.
  • Yang FX; College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing 210095, Jiangsu, China.
  • Wang X; College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing 210095, Jiangsu, China.
  • Wu SF; College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing 210095, Jiangsu, China. Electronic address: wusf@njau.edu.cn.
  • Gao CF; College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing 210095, Jiangsu, China. Electronic address: gaocongfen@njau.edu.cn.
Pestic Biochem Physiol ; 168: 104623, 2020 Sep.
Article em En | MEDLINE | ID: mdl-32711763
ABSTRACT
Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is the main destructive insect pest of grain crops that occurs in all maize growing regions of the Americas. It has rapidly invaded the Southern China since January 2019. However, the current status of insecticide resistance in S. frugiperda has not been reported in China. In this study, we determined the susceptibility of eight populations of FAW to eight insecticides by an artificial diet incorporation method. The results showed that among eight insecticides, emamectin benzoate, spinetoram, chlorantraniliprole, chlorfenapyr, and lufenuron showed higher toxicity to this pest, while lambda-cyhalothrin and azadirachtin exhibited lower toxicity. Susceptibility of S. frugiperda to indoxacarb was significantly different (10.0-fold for LC50) across the various geographic populations. To investigate the biochemical mechanism of FAW to lambda-cyhalothrin, we performed the synergism tests and the results showed that piperonyl butoxide (PBO) and triphenyl phosphate (TPP) produced a high synergism of lambda-cyhalothrin effects in the two field populations. Sequencing of the gene encoding the acetylcholinesterase (AChE) gene in the two field populations identified two amino acid mutations, all of which have been shown previously to confer resistance to organophosphates (OPs) in several arthropod species. The results of this study provided valuable information for choosing alternative insecticides and for insecticide resistance management of S. frugiperda.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals País/Região como assunto: Asia Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals País/Região como assunto: Asia Idioma: En Ano de publicação: 2020 Tipo de documento: Article