Your browser doesn't support javascript.
loading
The preventive and therapeutic effects of AAV1-KLF4-shRNA in cigarette smoke-induced pulmonary hypertension.
Sun, Desheng; Ding, DanDan; Li, Qinghai; Xie, Min; Xu, Yongjian; Liu, Xiansheng.
Afiliação
  • Sun D; Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Ding D; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
  • Li Q; Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Xie M; Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Xu Y; Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Liu X; Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
J Cell Mol Med ; 25(2): 1238-1251, 2021 01.
Article em En | MEDLINE | ID: mdl-33342082
ABSTRACT
We found previously that KLF4 expression was up-regulated in cultured rat and human pulmonary artery smooth muscle cells (PASMCs) exposed to cigarette smoke (CS) extract and in pulmonary artery from rats with pulmonary hypertension induced by CS. Here, we aim to investigate whether CS-induced pulmonary hypertension (PH) is prevented and ameliorated by targeted pulmonary vascular gene knockdown of KLF4 via adeno-associated virus 1 (AAV1)-KLF4-shRNA in vivo in rat model. The preventive and therapeutic effects were observed according to the different time-point of AAV1-KLF4-shRNA intratracheal administration. We tested haemodynamic measurements of systemic and pulmonary circulations and observed the degree of pulmonary vascular remodelling. In the preventive experiment, KLF4 expression and some pulmonary circulation hemodynamic measurements such as right ventricular systolic pressure (RVSP), mean right ventricular pressure (mRVP), peak RV pressure rate of rise (dP/dt max) and right ventricle (RV) contractility index were increased significantly in the CS-induced PH model. While in the prevention group (AAV1-KLF4-shRNA group), RVSP, mRVP, dP/dt max and RV contractility index which are associated with systolic function of right ventricle decreased and the degree of pulmonary vascular remodelling relieved. In the therapeutic experiment, we observed a similar trend. Our findings emphasize the feasibility of sustained pulmonary vascular KLF4 gene knockdown using intratracheal delivery of AAV1 in an animal model of cigarette smoke-induced PH and determined gene transfer of KLF4-shRNA could prevent and ameliorate the progression of PH.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article