Your browser doesn't support javascript.
loading
Photo-driven self-powered biosensors for ultrasensitive microRNA detection based on metal-organic framework-controlled release behavior.
Yu, Ying; Xu, Xiuli; Su, Qiao; Fu, Tengfei; Liu, Wenquan; Chen, Guangquan.
Afiliação
  • Yu Y; Coastal Science and Marine Policy Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, P.R China.
  • Xu X; School of Ocean Sciences, China University of Geosciences, Beijing, 100083, P. R. China. xuxl@cugb.edu.cn.
  • Su Q; Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, P.R China and Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, P.R China.
  • Fu T; Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, P.R China and Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, P.R China.
  • Liu W; Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, P.R China and Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, P.R China.
  • Chen G; Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, P.R China and Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, P.R China.
Analyst ; 146(3): 816-819, 2021 Feb 08.
Article em En | MEDLINE | ID: mdl-33393565
ABSTRACT
We developed a "signal-on" self-powered biosensing strategy by taking full advantage of both photoelectrochemical biofuel cells (PBFCs) and metal-organic framework (MOF)-controlled release behavior for ultrasensitive microRNA assay. PBFC-based self-powered sensors have the unique characteristics of non-requirement of external power sources, simple fabrication process, miniature size, good anti-interference ability and low cost. Furthermore, based on the target microRNA-induced release of the electron donor ascorbic acid and the high catalytic ability of the biocathode to catalyse the oxygen reduction reaction, photo-driven self-powered biosensors for ultrasensitive microRNA detection were successfully realized. The as-proposed signal-on biosensor not only provides a simple and effective strategy, but also possesses the merits of a wide dynamic concentration response range and high sensitivity for microRNA detection, with a limit of detection down to 0.16 fM.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article