Your browser doesn't support javascript.
loading
Shannon entropy for time-varying persistence of cell migration.
Liu, Yanping; Jiao, Yang; Fan, Qihui; Zheng, Yu; Li, Guoqiang; Yao, Jingru; Wang, Gao; Lou, Silong; Chen, Guo; Shuai, Jianwei; Liu, Liyu.
Afiliação
  • Liu Y; Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, China.
  • Jiao Y; Materials Science and Engineering, Arizona State University, Tempe, Arizona; Department of Physics, Arizona State University, Tempe, Arizona.
  • Fan Q; Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
  • Zheng Y; Department of Physics, Arizona State University, Tempe, Arizona.
  • Li G; Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, China.
  • Yao J; Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, China.
  • Wang G; Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, China.
  • Lou S; Department of Neurosurgery, Chongqing University Cancer Hospital, Chongqing, China.
  • Chen G; Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, China.
  • Shuai J; Department of Physics and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China. Electronic address: jianweishuai@xmu.edu.cn.
  • Liu L; Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, China. Electronic address: lyliu@cqu.edu.cn.
Biophys J ; 120(12): 2552-2565, 2021 06 15.
Article em En | MEDLINE | ID: mdl-33940024
Cell migration, which can be significantly affected by intracellular signaling pathways and extracellular matrix, plays a crucial role in many physiological and pathological processes. Cell migration is typically modeled as a persistent random walk, which depends on two critical motility parameters, i.e., migration speed and persistence time. It is generally very challenging to efficiently and accurately quantify the migration dynamics from noisy experimental data. Here, we introduce the normalized Shannon entropy (SE) based on the FPS of cellular velocity autocovariance function to quantify migration dynamics. The SE introduced here possesses a similar physical interpretation as the Gibbs entropy for thermal systems in that SE naturally reflects the degree of order or randomness of cellular migration, attaining the maximal value of unity for purely diffusive migration (i.e., SE = 1 for the most "random" dynamics) and the minimal value of 0 for purely ballistic dynamics (i.e., SE = 0 for the most "ordered" dynamics). We also find that SE is strongly correlated with the migration persistence but is less sensitive to the migration speed. Moreover, we introduce the time-varying SE based on the WPS of cellular dynamics and demonstrate its superior utility to characterize the time-dependent persistence of cell migration, which typically results from complex and time-varying intra- or extracellular mechanisms. We employ our approach to analyze experimental data of in vitro cell migration regulated by distinct intracellular and extracellular mechanisms, exhibiting a rich spectrum of dynamic characteristics. Our analysis indicates that the SE and wavelet transform (i.e., SE-based approach) offers a simple and efficient tool to quantify cell migration dynamics in complex microenvironment.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article