Your browser doesn't support javascript.
loading
Alkyne Hydrogenation Catalysis across a Family of Ga/In Layered Zintl Phases.
Hodge, Kelsey L; Goldberger, Joshua E.
Afiliação
  • Hodge KL; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States.
  • Goldberger JE; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States.
ACS Appl Mater Interfaces ; 13(44): 52152-52159, 2021 Nov 10.
Article em En | MEDLINE | ID: mdl-34427429
ABSTRACT
Transition-metal-free Zintl-Klemm phases have received little attention as heterogeneous catalysis. Here, we show that a large family of structurally and electronically similar layered Zintl-Klemm phases built from honeycomb layers of group 13 triel (Tr) or group 14 tetrel (Tt) networks separated by electropositive cations (A) and having a stoichiometry of ATr2 or ATrTt (A = Ca, Ba, Y, La, Eu; Tr = Ga, In; Tt = Si, Ge) exhibit varying degrees of activity for the hydrogenation of phenylacetylene to styrene and ethylbenzene at 51 bar H2 and 40-100 °C across a variety of solvents. The most active catalysts contain Ga with, formally, a half-filled pz orbital, and minimal bonding between neighboring Tr2 or TrTt layers. A 13-layer trigonal polytype of CaGaGe (13T-CaGaGe) was the most active, cyclable, and robust catalyst and under modest conditions (1 atm H2, 40 °C) had a surface specific activity (590 h-1) comparable to a commercial Lindlar's catalyst. Additionally, 13T-CaGaGe maintained 100% conversion of phenylacetylene to styrene at 51 bar H2, even after 5 months of air exposure. This work reveals the structural design elements that lead to particularly high catalytic activity in Zintl-Klemm phases, further establishing them as a promising materials platform for hydrogen-based heterogeneous catalysis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article