Your browser doesn't support javascript.
loading
Mesoionic Carbenes in Low- to High-Valent Vanadium Chemistry.
Neururer, Florian R; Liu, Shenyu; Leitner, Daniel; Baltrun, Marc; Fisher, Katherine R; Kopacka, Holger; Wurst, Klaus; Daumann, Lena J; Munz, Dominik; Hohloch, Stephan.
Afiliação
  • Neururer FR; Institute of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
  • Liu S; Faculty of Science, Department of Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany.
  • Leitner D; Institute of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
  • Baltrun M; Faculty of Science, Department of Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany.
  • Fisher KR; Department Chemie, Ludwigs-Maximilians-University Munich, Butenandtstraße 5-13 Haus D, 81377 Munich, Germany.
  • Kopacka H; Institute of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
  • Wurst K; Institute of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
  • Daumann LJ; Department Chemie, Ludwigs-Maximilians-University Munich, Butenandtstraße 5-13 Haus D, 81377 Munich, Germany.
  • Munz D; Fakultät NT, Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany.
  • Hohloch S; Institute of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
Inorg Chem ; 60(20): 15421-15434, 2021 Oct 18.
Article em En | MEDLINE | ID: mdl-34590834
We report the synthesis of vanadium(V) oxo complex 1 with a pincer-type dianionic mesoionic carbene (MIC) ligand L1 and the general formula [VOCl(L1)]. A comparison of the structural (SC-XRD), electronic (UV-vis), and electrochemical (cyclic voltammetry) properties of 1 with the benzimidazolinylidene congener 2 (general formula [VOCl(L2)]) shows that the MIC is a stronger donor also for early transition metals with low d-electron population. Since electrochemical studies revealed both complexes to be reversibly reduced, the stronger donor character of MICs was not only demonstrated for the vanadium(V) but also for the vanadium(IV) oxidation state by isolating the reduced vanadium(IV) complexes [Co(Cp*)2][1] and [Co(Cp*)2][2] ([Co(Cp*)2] = decamethylcobaltocenium). The electronic structures of the compounds were investigated by computational methods. Complex 1 was found to be a moderate precursor for salt metathesis reactions, showing selective reactivity toward phenolates or secondary amides, but not toward primary amides and phosphides, thiophenols, or aryls/alkyls donors. Deoxygenation with electron-rich phosphines failed to give the desired vanadium(III) complex. However, treatment of the deprotonated ligand precursor with vanadium(III) trichloride resulted in the clean formation of the corresponding MIC vanadium(III) complex 6, which undergoes a clean two-electron oxidation with organic azides yielding the corresponding imido complexes. The reaction with TMS-N3 did not afford a nitrido complex, but instead the imido complex 10. This study reveals that, contrary to popular belief, MICs are capable of supporting early transition-metal complexes in a variety of oxidation states, thus making them promising candidates for the activation of small molecules and redox catalysis.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article