Your browser doesn't support javascript.
loading
Highly sensitive interleukin 6 detection by employing commercially ready liposomes in an LFA format.
Rink, Simone; Kaiser, Barbara; Steiner, Mark-Steven; Duerkop, Axel; Baeumner, Antje J.
Afiliação
  • Rink S; Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
  • Kaiser B; Microcoat Biotechnologie GmbH, 82347, Bernried am Starnberger See, Germany.
  • Steiner MS; Microcoat Biotechnologie GmbH, 82347, Bernried am Starnberger See, Germany.
  • Duerkop A; Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
  • Baeumner AJ; Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany. antje.baeumner@ur.de.
Anal Bioanal Chem ; 414(10): 3231-3241, 2022 Apr.
Article em En | MEDLINE | ID: mdl-34773470
ABSTRACT
Recent years have confirmed the ubiquitous applicability of lateral flow assays (LFA) in point-of-care testing (POCT). To make this technology available for low abundance analytes, strategies towards lower limits of detections (LOD), while maintaining the LFA's ease of use, are still being sought. Here, we demonstrate how liposomes can significantly improve the LOD of traditional gold nanoparticle (AuNP)-based assays while fully supporting a ready-to-use system for commercial application. We fine-tuned liposomes towards photometric and fluorescence performance on the synthesis level and applied them in an established interleukin 6 (IL-6) immunoassay normally using commercial AuNP labels. IL-6's low abundance (< 10 pg mL-1) and increasing relevance as prognostic marker for infections make it an ideal model analyte. It was found that liposomes with a high encapsulant load (150 mmol L-1 sulforhodamine B (SRB)) easily outperform AuNPs in photometric LFAs. Specifically, liposomes with 350 nm in diameter yield a lower LOD even in complex matrices such as human serum below the clinically relevant range (7 pg mL-1) beating AuNP by over an order of magnitude (81 pg mL-1). When dehydrated on the strip, liposomes maintained their signal performance for over a year even when stored at ambient temperature and indicate extraordinary stability of up to 8 years when stored as liquid. Whereas no LOD improvement was obtained by exploiting the liposomes' fluorescence, an extraordinary gain in signal intensity was achieved upon lysis which is a promising feature for high-resolution and low-cost detection devices. Minimizing the procedural steps by inherently fluorescent liposomes, however, is not feasible. Finally, liposomes are ready for commercial applications as they are easy to mass-produce and can simply be substituted for the ubiquitously used AuNPs in the POCT market.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article