Your browser doesn't support javascript.
loading
Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography.
Vakarin, Vladyslav; Melati, Daniele; Dinh, Thi Thuy Duong; Le Roux, Xavier; Kan, Warren Kut King; Dupré, Cécilia; Szelag, Bertrand; Monfray, Stéphane; Boeuf, Frédéric; Cheben, Pavel; Cassan, Eric; Marris-Morini, Delphine; Vivien, Laurent; Alonso-Ramos, Carlos Alberto.
Afiliação
  • Vakarin V; Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France.
  • Melati D; Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France.
  • Dinh TTD; Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France.
  • Le Roux X; Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France.
  • Kan WKK; LETI, University Grenoble Alpes and CEA, 38054 Grenoble, France.
  • Dupré C; LETI, University Grenoble Alpes and CEA, 38054 Grenoble, France.
  • Szelag B; LETI, University Grenoble Alpes and CEA, 38054 Grenoble, France.
  • Monfray S; STMicroelectronics SAS, 850 rue Jean Monnet, 38920 Crolles, France.
  • Boeuf F; STMicroelectronics SAS, 850 rue Jean Monnet, 38920 Crolles, France.
  • Cheben P; National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada.
  • Cassan E; Center for Research in Photonics, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
  • Marris-Morini D; Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France.
  • Vivien L; Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France.
  • Alonso-Ramos CA; Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France.
Nanomaterials (Basel) ; 11(11)2021 Nov 03.
Article em En | MEDLINE | ID: mdl-34835713
Subwavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the material properties and the propagation of light, allowing the realization of devices with unprecedented performance. However, practical SWG implementations are limited by fabrication constraints, such as minimum feature size, that restrict the available design space or compromise compatibility with high-volume fabrication technologies. Indeed, most successful SWG realizations so far relied on electron-beam lithographic techniques, compromising the scalability of the approach. Here, we report the experimental demonstration of an SWG metamaterial engineered beam splitter fabricated with deep-ultraviolet immersion lithography in a 300-mm silicon-on-insulator technology. The metamaterial beam splitter exhibits high performance over a measured bandwidth exceeding 186 nm centered at 1550 nm. These results open a new route for the development of scalable silicon photonic circuits exploiting flexible metamaterial engineering.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article