A novel role for nucleolin in splice site selection.
RNA Biol
; 19(1): 333-352, 2022.
Article
em En
| MEDLINE
| ID: mdl-35220879
Latent 5' splice sites, not normally used, are highly abundant in human introns, but are activated under stress and in cancer, generating thousands of nonsense mRNAs. A previously proposed mechanism to suppress latent splicing was shown to be independent of NMD, with a pivotal role for initiator-tRNA independent of protein translation. To further elucidate this mechanism, we searched for nuclear proteins directly bound to initiator-tRNA. Starting with UV-crosslinking, we identified nucleolin (NCL) interacting directly and specifically with initiator-tRNA in the nucleus, but not in the cytoplasm. Next, we show the association of ini-tRNA and NCL with pre-mRNA. We further show that recovery of suppression of latent splicing by initiator-tRNA complementation is NCL dependent. Finally, upon nucleolin knockdown we show activation of latent splicing in hundreds of coding transcripts having important cellular functions. We thus propose nucleolin, a component of the endogenous spliceosome, through its direct binding to initiator-tRNA and its effect on latent splicing, as the first protein of a nuclear quality control mechanism regulating splice site selection to protect cells from latent splicing that can generate defective mRNAs.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Limite:
Humans
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article