Your browser doesn't support javascript.
loading
Process-Aid Solid Engineering Triggers Delicately Modulation of Y-Series Non-Fullerene Acceptor for Efficient Organic Solar Cells.
Song, Xin; Zhang, Kai; Guo, Renjun; Sun, Kun; Zhou, Zhongxin; Huang, Shenglei; Huber, Linus; Reus, Manuel; Zhou, Jungui; Schwartzkopf, Matthias; Roth, Stephan V; Liu, Wenzhu; Liu, Yu; Zhu, Weiguo; Müller-Buschbaum, Peter.
Afiliação
  • Song X; School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China.
  • Zhang K; School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China.
  • Guo R; Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, 85748, Garching, Germany.
  • Sun K; Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, 85748, Garching, Germany.
  • Zhou Z; School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China.
  • Huang S; Research Center for New Energy Technology (RCNET), Shanghai Institute of Microsystem and Information technology (SIMIT), Chinese Academy of Science (CAS), Jiading, Shanghai, 201800, China.
  • Huber L; Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, 85748, Garching, Germany.
  • Reus M; Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, 85748, Garching, Germany.
  • Zhou J; Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, 85748, Garching, Germany.
  • Schwartzkopf M; Deutsches Elektronen-Synchrotron (DESY), 22607, Hamburg, Germany.
  • Roth SV; Deutsches Elektronen-Synchrotron (DESY), 22607, Hamburg, Germany.
  • Liu W; Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm, 10044, Sweden.
  • Liu Y; Research Center for New Energy Technology (RCNET), Shanghai Institute of Microsystem and Information technology (SIMIT), Chinese Academy of Science (CAS), Jiading, Shanghai, 201800, China.
  • Zhu W; School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China.
  • Müller-Buschbaum P; School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China.
Adv Mater ; 34(20): e2200907, 2022 May.
Article em En | MEDLINE | ID: mdl-35315132
Volatile solids with symmetric π-backbone are intensively implemented on manipulating the nanomorphology for improving the operability and stability of organic solar cells. However, due to the isotropic stacking, the announced solids with symmetric geometry cannot modify the microscopic phase separation and component distribution collaboratively, which will constrain the promotion of exciton splitting and charge collection efficiency. Inspired by the superiorities of asymmetric configuration, a novel process-aid solid (PAS) engineering is proposed. By coupling with BTP core unit in Y-series molecule, an asymmetric, volatile 1,3-dibromo-5-chlorobenzene solid can induce the anisotropic dipole direction, elevated dipole moment, and interlaminar interaction spontaneously. Due to the synergetic effects on the favorable phase separation and desired component distribution, the PAS-treated devices feature the evident improvement of exciton splitting, charge transport, and collection, accompanied by the suppressed trap-assisted recombination. Consequently, an impressive fill factor of 80.2% with maximum power conversion efficiency (PCE) of 18.5% in the PAS-treated device is achieved. More strikingly, the PAS-treated devices demonstrate a promising thickness-tolerance character, where a record PCE of 17.0% is yielded in PAS devices with a 300 nm thickness photoactive layer, which represents the highest PCE for thick-film organic solar cells.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article