Your browser doesn't support javascript.
loading
Study of near-infrared light-induced excitation of upconversion nanoparticles as a vector for non-viral DNA delivery.
Wang, Jen-Hsuan; Chen, Hsin-Yu; Chuang, Ching-Cheng; Chen, Jung-Chih.
Afiliação
  • Wang JH; Institute of Biomedical Engineering, National Chiao Tung University HsinChu 30010 Taiwan Republic of China george@nctu.edu.tw.
  • Chen HY; Institute of Biomedical Engineering, National Chiao Tung University HsinChu 30010 Taiwan Republic of China george@nctu.edu.tw.
  • Chuang CC; Institute of Biomedical Engineering, National Chiao Tung University HsinChu 30010 Taiwan Republic of China george@nctu.edu.tw.
  • Chen JC; Department of Electrical and Computer Engineering, National Chiao Tung University HsinChu 30010 Taiwan Republic of China.
RSC Adv ; 10(67): 41013-41021, 2020 11 09.
Article em En | MEDLINE | ID: mdl-35519194
ABSTRACT
Clinical requirements have necessitated the development of biomedical nanomaterials that can be implanted into tissues or bodies. Physiological regulation can be achieved in these nanomaterials through external light. The combination of nanomaterials with infrared optics can be termed optogenetics. The low autofluorescence of upconversion nanoparticles (UCNPs) has several applications in the biological field. For optogenetics applications, UCNPs with high fluorescence performance and photostability can solve the penetration depth problem. NaYF4Yb,Tm nanocrystals with controllable sizes, shapes, and compositions were synthesized using a rapid coprecipitation method in organic solvent. UCNPs using single crystal nanoparticles provide higher chemical stability than those using amorphous phase. However, because UCNPs are usually capped with hydrophobic ligands, it is particularly important to prepare biocompatible UCNPs with specific molecular recognition capabilities. Surface modification and subsequent functionalization are essential for the application of inorganic nanomaterials in the biological environment and are arousing increasing research interest. Due to the high biocompatibility and high loading of materials, mesoporous silica and amine groups were selected as the best candidates. Expression of plasmid DNA in vivo and transfection efficiency were determined by fluorescence microscopy and flow cytometry. The MTT assay was used to evaluate the particle biocompatibility; the results showed that UCNP@mSiO2 has great biocompatibility. Additionally, at neutral pH, the cell surface is negatively charged. Therefore, the surface is functionalized with amino groups and can be electrostatically bound to DNA. Finally, UCNP@mSiO2-NH2 as a vector was applied in live cells by loading DNA; according to the results, DNA-UCNPs were successfully transfected in the primary cells, and NaYF4Yb,Tm@mSiO2-NH2-DNA were observed to have good transfection efficiency by flow cytometry. It is expected that this work will provide a different method from the traditional adenovirus method and improve the immune response and side effects caused by adenovirus.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article