Your browser doesn't support javascript.
loading
Weakly Supervised Tumor Detection in PET Using Class Response for Treatment Outcome Prediction.
Amyar, Amine; Modzelewski, Romain; Vera, Pierre; Morard, Vincent; Ruan, Su.
Afiliação
  • Amyar A; General Electric Healthcare, 78530 Buc, France.
  • Modzelewski R; LITIS-EA4108-Quantif, University of Rouen, 76800 Rouen, France.
  • Vera P; LITIS-EA4108-Quantif, University of Rouen, 76800 Rouen, France.
  • Morard V; Nuclear Medicine Department, Henri Becquerel Center, 76038 Rouen, France.
  • Ruan S; LITIS-EA4108-Quantif, University of Rouen, 76800 Rouen, France.
J Imaging ; 8(5)2022 May 09.
Article em En | MEDLINE | ID: mdl-35621894
It is proven that radiomic characteristics extracted from the tumor region are predictive. The first step in radiomic analysis is the segmentation of the lesion. However, this task is time consuming and requires a highly trained physician. This process could be automated using computer-aided detection (CAD) tools. Current state-of-the-art methods are trained in a supervised learning setting, which requires a lot of data that are usually not available in the medical imaging field. The challenge is to train one model to segment different types of tumors with only a weak segmentation ground truth. In this work, we propose a prediction framework including a 3D tumor segmentation in positron emission tomography (PET) images, based on a weakly supervised deep learning method, and an outcome prediction based on a 3D-CNN classifier applied to the segmented tumor regions. The key step is to locate the tumor in 3D. We propose to (1) calculate two maximum intensity projection (MIP) images from 3D PET images in two directions, (2) classify the MIP images into different types of cancers, (3) generate the class activation maps through a multitask learning approach with a weak prior knowledge, and (4) segment the 3D tumor region from the two 2D activation maps with a proposed new loss function for the multitask. The proposed approach achieves state-of-the-art prediction results with a small data set and with a weak segmentation ground truth. Our model was tested and validated for treatment response and survival in lung and esophageal cancers on 195 patients, with an area under the receiver operating characteristic curve (AUC) of 67% and 59%, respectively, and a dice coefficient of 73% and 0.77% for tumor segmentation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article