N-Heterocyclic Carbene-Coordinated M(II) (M = Yb, Sm, Ca) Bisamides: Expanding the Limits of Intermolecular Alkene Hydrophosphination.
Inorg Chem
; 61(24): 9147-9161, 2022 Jun 20.
Article
em En
| MEDLINE
| ID: mdl-35679149
A series of NHC-stabilized amido compounds (NHC)nM[N(SiMe3)2]2 (M = Yb(II), Sm(II), Ca(II); n = 1, 2) showed remarkable catalytic efficiency in addition of PhPH2 and PH3 to alkenes under mild conditions and low catalyst loading. The effect of σ-donor capacity of NHCs on catalytic activity in hydrophosphination of styrene with PhPH2 and PH3 was revealed. For the series of three-coordinate complexes 1-4M, a tendency to increase the catalytic activity with growth of σ-donating strength of the carbene ligand was clearly demonstrated. The complex (NHC)2Sm[N(SiMe3)2]2 (NHC = 1,3-diisopropyl-2H-imidazole-2-ylidene) (5Sm) proved to be the most efficient catalyst, which enabled hardly realizable transformations such as PhPH2 addition across internal CâC bonds of norbornene and cis- and trans-stilbenes, providing the highest reaction rate for addition of PH3 to styrene. Excellent regio- and chemoselectivities of alkylation of PH3 with styrenes allow for a selective and good-yield synthesis of desired organophosphinesâeither primary, secondary, or tertiary. Stepwise alkylation of PH3 with various substituted styrenes can be efficiently applied as an approach to nonsymmetric secondary phosphines. The rate equation of the addition of styrene to PH3 promoted by 5Sm was found: rate = k[styrene]1[5Sm]1.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article