Your browser doesn't support javascript.
loading
Single-Cell Identification, Drug Susceptibility Test, and Whole-genome Sequencing of Helicobacter pylori Directly from Gastric Biopsy by Clinical Antimicrobial Susceptibility Test Ramanometry.
Liu, Min; Zhu, Pengfei; Zhang, Lei; Gong, Yanhai; Wang, Chen; Sun, Lu; Wang, Lili; Chen, Rongze; Mao, Yuli; Fu, Xiaoting; Zhang, Lili; Xu, Teng; Ji, Yuetong; Dong, Quanjiang; Ma, Bo; Zhang, Jianzhong; Xu, Jian.
Afiliação
  • Liu M; Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
  • Zhu P; University of Chinese Academy of Sciences, Beijing, China.
  • Zhang L; Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
  • Gong Y; University of Chinese Academy of Sciences, Beijing, China.
  • Wang C; Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
  • Sun L; University of Chinese Academy of Sciences, Beijing, China.
  • Wang L; Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
  • Chen R; University of Chinese Academy of Sciences, Beijing, China.
  • Mao Y; Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
  • Fu X; University of Chinese Academy of Sciences, Beijing, China.
  • Zhang L; State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
  • Xu T; Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China.
  • Ji Y; Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
  • Dong Q; University of Chinese Academy of Sciences, Beijing, China.
  • Ma B; Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
  • Zhang J; University of Chinese Academy of Sciences, Beijing, China.
  • Xu J; Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
Clin Chem ; 68(8): 1064-1074, 2022 07 27.
Article em En | MEDLINE | ID: mdl-35714147
BACKGROUND: The battle against Helicobacter pylori (H. pylori) infections demands fast, reliable, and sensitive methods for pathogen identification (ID), antimicrobial susceptibility tests (ASTs) based on metabolic response, and genome-wide mutation profiling that reveals resistance mechanisms. METHODS: Here we introduce Clinical Antimicrobial Susceptibility Test Ramanometry for H. pylori (CAST-R-HP), and its validation with clinical samples. This method performs rapid ID, metabolism inhibition-based AST, and high-quality whole-genome sequencing for cells of targeted resistance phenotype, all at precisely 1-cell resolution and directly from biopsy samples. RESULTS: In CAST-R-HP, automated acquisition and machine learning of single-cell Raman spectra (SCRS) enable distinguishing individual H. pylori cells directly from a biopsy sample, with 98.5 ± 0.27% accuracy in ID. Moreover, by adding a 48- to72-h D2O feeding and drug exposure step prior to SCRS acquisition, CAST-R-HP reports AST for levofloxacin and clarithromycin with 100% accuracy, based on metabolic inhibition level. Furthermore, CAST-R-HP supports rapid sorting, low-bias DNA amplification, and full genome sequencing of single H. pylori cells with the SCRS defined, targeted drug-susceptibility phenotype, via Raman-activated gravity-driven cell encapsulation and sequencing. The genome-wide mutation map (maximum 99.70% coverage), at precisely 1-cell resolution, not only elucidates the drug-susceptibility phenotypes but also unveils their underlying molecular mechanisms. CONCLUSION: The culture independency, shorter turnaround time, high resolution, and comprehensive information output suggest that CAST-R-HP is a powerful tool for diagnosing and treating H. pylori infections.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article