Discovery of N-benzylarylamide derivatives as novel tubulin polymerization inhibitors capable of activating the Hippo pathway.
Eur J Med Chem
; 240: 114583, 2022 Oct 05.
Article
em En
| MEDLINE
| ID: mdl-35834904
Novel N-benzylarylamide saderivatives were designed and synthesized, and their antiproliferative activities were explored. Some of 51 target compounds exhibited potent inhibitory activities against MGC-803, HCT-116 and KYSE450 cells with IC50 values in two-digit nanomolar. Compound I-33 (MY-875) displayed the most potent antiproliferative activities against MGC-803, HCT-116 and KYSE450 cells (IC50 = 0.027, 0.055 and 0.067 µM, respectively) and possessed IC50 values ranging from 0.025 to 0.094 µM against other 11 cancer cell lines. Further mechanism studies indicated that compound I-33 (MY-875) inhibited tubulin polymerization (IC50 = 0.92 µM) by targeting the colchicine bingding site of tubulin. Compound I-33 (MY-875) disrupted the construction of the microtubule networks and affected the mitosis in MGC-803 and SGC-7901 cells. In addition, although it acted as a colchicine binding site inhibitor, compound I-33 (MY-875) also activated the Hippo pathway to promote the phosphorylation status of MST and LATS, resulting in the YAP degradation in MGC-803 and SGC-7901 cells. Due to the degradation of YAP, the expression levels of TAZ and Axl decreased. Because of the dual actions on colchicine binding site and Hippo pathway, compound I-33 (MY-875) dose-dependently inhibited cell colony formatting ability, arrested cells at the G2/M phase and induced cells apoptosis in MGC-803 and SGC-7901 cells. Moreover, compound I-33 (MY-875) could regulate the levels of cell cycle and apoptosis regulatory proteins in MGC-803 and SGC-7901 cells. Furthermore, molecular docking analysis suggested that the hydrogen bond and hydrophobic interactions made compound I-33 (MY-875) well bind into the colchicine binding site of tubulin. Collectively, compound I-33 (MY-875) is a novel anti-gastric cancer agent and deserves to be further investigated for cancer therapy by targeting the colchicine binding site of tubulin and activating the Hippo pathway.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article