Your browser doesn't support javascript.
loading
NOX1 is essential for TNFα-induced intestinal epithelial ROS secretion and inhibits M cell signatures.
Hsu, Nai-Yun; Nayar, Shikha; Gettler, Kyle; Talware, Sayali; Giri, Mamta; Alter, Isaac; Argmann, Carmen; Sabic, Ksenija; Thin, Tin Htwe; Ko, Huai-Bin Mabel; Werner, Robert; Tastad, Christopher; Stappenbeck, Thaddeus; Azabdaftari, Aline; Uhlig, Holm H; Chuang, Ling-Shiang; Cho, Judy H.
Afiliação
  • Hsu NY; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Nayar S; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Gettler K; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Talware S; Division of Gastroenterology, Icahn School of Medicine at Mount Sinai Department of Medicine, New York, New York, USA.
  • Giri M; The Icahn Genomic Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Alter I; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Argmann C; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Sabic K; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Thin TH; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Ko HM; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Werner R; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA.
  • Tastad C; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Stappenbeck T; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Azabdaftari A; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA.
  • Uhlig HH; Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
  • Chuang LS; Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
  • Cho JH; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Gut ; 72(4): 654-662, 2023 04.
Article em En | MEDLINE | ID: mdl-36191961
ABSTRACT

OBJECTIVE:

Loss-of-function mutations in genes generating reactive oxygen species (ROS), such as NOX1, are associated with IBD. Mechanisms whereby loss of ROS drive IBD are incompletely defined.

DESIGN:

ROS measurements and single-cell transcriptomics were performed on colonoids stratified by NOX1 genotype and TNFα stimulation. Clustering of epithelial cells from human UC (inflamed and uninflamed) scRNASeq was performed. Validation of M cell induction was performed by immunohistochemistry using UEA1 (ulex europaeus agglutin-1 lectin) and in vivo with DSS injury.

RESULTS:

TNFα induces ROS production more in NOX1-WT versus NOX1-deficient murine colonoids under a range of Wnt-mediated and Notch-mediated conditions. scRNASeq from inflamed and uninflamed human colitis versus TNFα stimulated, in vitro colonoids defines substantially shared, induced transcription factors; NOX1-deficient colonoids express substantially lower levels of STAT3 (signal transducer and activator of transcription 3), CEBPD (CCAAT enhancer-binding protein delta), DNMT1 (DNA methyltransferase) and HIF1A (hypoxia-inducible factor) baseline. Subclustering unexpectedly showed marked TNFα-mediated induction of M cells (sentinel cells overlying lymphoid aggregates) in NOX1-deficient colonoids. M cell induction by UEA1 staining is rescued with H2O2 and paraquat, defining extra- and intracellular ROS roles in maintenance of LGR5+ stem cells. DSS injury demonstrated GP2 (glycoprotein-2), basal lymphoplasmacytosis and UEA1 induction in NOX1-deficiency. Principal components analyses of M cell genes and decreased DNMT1 RNA velocity correlate with UC inflammation.

CONCLUSIONS:

NOX1 deficiency plus TNFα stimulation contribute to colitis through dysregulation of the stem cell niche and altered cell differentiation, enhancing basal lymphoplasmacytosis. Our findings prioritise ROS modulation for future therapies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article