Artificial intelligence in hematological diagnostics: Game changer or gadget?
Blood Rev
; 58: 101019, 2023 03.
Article
em En
| MEDLINE
| ID: mdl-36241586
The future of clinical diagnosis and treatment of hematologic diseases will inevitably involve the integration of artificial intelligence (AI)-based systems into routine practice to support the hematologists' decision making. Several studies have shown that AI-based models can already be used to automatically differentiate cells, reliably detect malignant cell populations, support chromosome banding analysis, and interpret clinical variants, contributing to early disease detection and prognosis. However, even the best tool can become useless if it is misapplied or the results are misinterpreted. Therefore, in order to comprehensively judge and correctly apply newly developed AI-based systems, the hematologist must have a basic understanding of the general concepts of machine learning. In this review, we provide the hematologist with a comprehensive overview of various machine learning techniques, their current implementations and approaches in different diagnostic subfields (e.g., cytogenetics, molecular genetics), and the limitations and unresolved challenges of the systems.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article