Automated scoring of total inflammation in renal allograft biopsies.
Clin Transplant
; 37(1): e14837, 2023 01.
Article
em En
| MEDLINE
| ID: mdl-36259615
BACKGROUND: Computer-assisted scoring is gaining prominence in the evaluation of renal histology; however, much of the focus has been on identifying larger objects such as glomeruli. Total inflammation impacts graft outcome, and its quantification requires tools to identify objects at the cellular level or smaller. The goal of the current study was to use CD45 stained slides coupled with image analysis tools to quantify the amount of non-glomerular inflammation within the cortex. METHODS: Sixty renal transplant whole slide images were used for digital image analysis. Multiple thresholding methods using pixel intensity and object size were used to identify inflammation in the cortex. Additionally, convolutional neural networks were used to separate glomeruli from other objects in the cortex. This combined measure of inflammation was then correlated with rescored Banff total inflammation classification and outcomes. RESULTS: Identification of glomeruli on biopsies had high fidelity (mean pixelwise dice coefficient of .858). Continuous total inflammation scores correlated well with Banff rescoring (maximum Pearson correlation .824). A separate set of thresholds resulted in a significant correlation with alloimmune graft loss. CONCLUSIONS: Automated scoring of inflammation showed a high correlation with Banff scoring. Digital image analysis provides a powerful tool for analysis of renal pathology, not only because it is reproducible and can be automated, but also because it provides much more granular data for studies.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article