Your browser doesn't support javascript.
loading
Influences of rare copy-number variation on human complex traits.
Hujoel, Margaux L A; Sherman, Maxwell A; Barton, Alison R; Mukamel, Ronen E; Sankaran, Vijay G; Terao, Chikashi; Loh, Po-Ru.
Afiliação
  • Hujoel MLA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard,
  • Sherman MA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard,
  • Barton AR; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Bioinformatics and Integrative Genomics Program, Harvard Medical School, Boston,
  • Mukamel RE; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard,
  • Sankaran VG; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
  • Terao C; Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan; Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
  • Loh PR; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard,
Cell ; 185(22): 4233-4248.e27, 2022 10 27.
Article em En | MEDLINE | ID: mdl-36306736
The human genome contains hundreds of thousands of regions harboring copy-number variants (CNV). However, the phenotypic effects of most such polymorphisms are unknown because only larger CNVs have been ascertainable from SNP-array data generated by large biobanks. We developed a computational approach leveraging haplotype sharing in biobank cohorts to more sensitively detect CNVs. Applied to UK Biobank, this approach accounted for approximately half of all rare gene inactivation events produced by genomic structural variation. This CNV call set enabled a detailed analysis of associations between CNVs and 56 quantitative traits, identifying 269 independent associations (p < 5 × 10-8) likely to be causally driven by CNVs. Putative target genes were identifiable for nearly half of the loci, enabling insights into dosage sensitivity of these genes and uncovering several gene-trait relationships. These results demonstrate the ability of haplotype-informed analysis to provide insights into the genetic basis of human complex traits.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article