Your browser doesn't support javascript.
loading
COVID-19 outbreaks analysis in the Valencian Region of Spain in the prelude of the third wave.
Fuente, David; Hervás, David; Rebollo, Miguel; Conejero, J Alberto; Oliver, Nuria.
Afiliação
  • Fuente D; Instituto Universitario de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas, Universitat Politècnica de València, València, Spain.
  • Hervás D; Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, València, Spain.
  • Rebollo M; Valencia Research Institute on Artificial Intelligence, Universitat Politècnica de València, València, Spain.
  • Conejero JA; Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, València, Spain.
  • Oliver N; ELLIS Alicante, Alicante, Spain.
Front Public Health ; 10: 1010124, 2022.
Article em En | MEDLINE | ID: mdl-36466513
Introduction: The COVID-19 pandemic has led to unprecedented social and mobility restrictions on a global scale. Since its start in the spring of 2020, numerous scientific papers have been published on the characteristics of the virus, and the healthcare, economic and social consequences of the pandemic. However, in-depth analyses of the evolution of single coronavirus outbreaks have been rarely reported. Methods: In this paper, we analyze the main properties of all the tracked COVID-19 outbreaks in the Valencian Region between September and December of 2020. Our analysis includes the evaluation of the origin, dynamic evolution, duration, and spatial distribution of the outbreaks. Results: We find that the duration of the outbreaks follows a power-law distribution: most outbreaks are controlled within 2 weeks of their onset, and only a few last more than 2 months. We do not identify any significant differences in the outbreak properties with respect to the geographical location across the entire region. Finally, we also determine the cluster size distribution of each infection origin through a Bayesian statistical model. Discussion: We hope that our work will assist in optimizing and planning the resource assignment for future pandemic tracking efforts.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Qualitative_research Limite: Humans País/Região como assunto: Europa Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Qualitative_research Limite: Humans País/Região como assunto: Europa Idioma: En Ano de publicação: 2022 Tipo de documento: Article